期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Randomized Algorithms for Orthogonal Nonnegative Matrix Factorization 被引量:1
1
作者 Yong-Yong Chen Fang-Fang Xu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期327-345,共19页
Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direc... Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direction method of multipliers and hierarchical alternating least squares method.When the given matrix is huge,the cost of computation and communication is too high.Therefore,ONMF becomes challenging in the large-scale setting.The random projection is an efficient method of dimensionality reduction.In this paper,we apply the random projection to ONMF and propose two randomized algorithms.Numerical experiments show that our proposed algorithms perform well on both simulated and real data. 展开更多
关键词 Orthogonal nonnegative matrix factorization Random projection method Dimensionality reduction Augmented lagrangian method Hierarchical alternating least squares algorithm
原文传递
Sparse Deep Nonnegative Matrix Factorization 被引量:1
2
作者 Zhenxing Guo Shihua Zhang 《Big Data Mining and Analytics》 2020年第1期13-28,共16页
Nonnegative Matrix Factorization(NMF)is a powerful technique to perform dimension reduction and pattern recognition through single-layer data representation learning.However,deep learning networks,with their carefully... Nonnegative Matrix Factorization(NMF)is a powerful technique to perform dimension reduction and pattern recognition through single-layer data representation learning.However,deep learning networks,with their carefully designed hierarchical structure,can combine hidden features to form more representative features for pattern recognition.In this paper,we proposed sparse deep NMF models to analyze complex data for more accurate classification and better feature interpretation.Such models are designed to learn localized features or generate more discriminative representations for samples in distinct classes by imposing L1-norm penalty on the columns of certain factors.By extending a one-layer model into a multilayer model with sparsity,we provided a hierarchical way to analyze big data and intuitively extract hidden features due to nonnegativity.We adopted the Nesterov’s accelerated gradient algorithm to accelerate the computing process.We also analyzed the computing complexity of our frameworks to demonstrate their efficiency.To improve the performance of dealing with linearly inseparable data,we also considered to incorporate popular nonlinear functions into these frameworks and explored their performance.We applied our models using two benchmarking image datasets,and the results showed that our models can achieve competitive or better classification performance and produce intuitive interpretations compared with the typical NMF and competing multilayer models. 展开更多
关键词 SPARSE nonnegative matrix factorization(NMF) DEEP learning Nesterov’s ACCELERATED gradient algorithm
原文传递
Robust non-negative matrix factorization 被引量:4
3
作者 Lijun ZHANG Zhengguang CHEN +1 位作者 Miao ZHENG Xiaofei HE 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期192-200,共9页
Non-negative matrix factorization(NMF)is a recently popularized technique for learning partsbased,linear representations of non-negative data.The traditional NMF is optimized under the Gaussian noise or Poisson noise ... Non-negative matrix factorization(NMF)is a recently popularized technique for learning partsbased,linear representations of non-negative data.The traditional NMF is optimized under the Gaussian noise or Poisson noise assumption,and hence not suitable if the data are grossly corrupted.To improve the robustness of NMF,a novel algorithm named robust nonnegative matrix factorization(RNMF)is proposed in this paper.We assume that some entries of the data matrix may be arbitrarily corrupted,but the corruption is sparse.RNMF decomposes the non-negative data matrix as the summation of one sparse error matrix and the product of two non-negative matrices.An efficient iterative approach is developed to solve the optimization problem of RNMF.We present experimental results on two face databases to verify the effectiveness of the proposed method. 展开更多
关键词 robust non-negative matrix factorization(rnmf) convex optimization dimensionality reduction
原文传递
基于非负矩阵分解与改进极端学习机的变压器油中溶解气体浓度预测模型 被引量:8
4
作者 刘亚南 范立新 +3 位作者 徐钢 唐一铭 刘全 都晨 《高压电器》 CAS CSCD 北大核心 2016年第1期162-169,共8页
变压器油中溶解气体浓度是评估变压器绝缘状态的重要依据,对气体浓度进行有效预测,可以及时识别变压器潜伏性故障。文中提出一种基于非负矩阵分解(nonnegative matrix factorization,NMF)与改进极端学习机(extreme learning machine,ELM... 变压器油中溶解气体浓度是评估变压器绝缘状态的重要依据,对气体浓度进行有效预测,可以及时识别变压器潜伏性故障。文中提出一种基于非负矩阵分解(nonnegative matrix factorization,NMF)与改进极端学习机(extreme learning machine,ELM)组合的变压器中溶解气体浓度预测模型。该方法通过NMF算法对输入样本进行分解,同时引入Adaboost算法对极端学习机进行改进;将低维矩阵作为模型的训练样本输入,剔除冗余数据,提高预测精度。实例分析结果表明,文中提出的方法能有效地降低输入样本维数,提高预测精度,能较好地解决变压器油中溶解气体浓度预测问题。 展开更多
关键词 变压器 溶解气体 非负矩阵分解 极端学习机 ADABOOST算法
下载PDF
改进的非负矩阵分解语音增强算法 被引量:7
5
作者 胡永刚 张雄伟 +4 位作者 邹霞 闵刚 郑云飞 李莉 石佳佳 《信号处理》 CSCD 北大核心 2015年第9期1117-1123,共7页
本文提出了一种改进的非负矩阵分解语音增强算法,该算法可分为训练和增强两部分。首先,为了降低训练复杂度,采用卷积非负矩阵分解只提取噪声字典。增强时,考虑语音信号稀疏性比噪声信号稀疏性强,通过稀疏非负矩阵分解重构出语音幅度谱,... 本文提出了一种改进的非负矩阵分解语音增强算法,该算法可分为训练和增强两部分。首先,为了降低训练复杂度,采用卷积非负矩阵分解只提取噪声字典。增强时,考虑语音信号稀疏性比噪声信号稀疏性强,通过稀疏非负矩阵分解重构出语音幅度谱,采用交替方向乘子法进行优化迭代,克服了经典乘性迭代易陷入局部最优、分母只能收敛到零极限等问题。最后,基于算法融合的思想,将重构的语音幅度谱与谱减法、最小均方误差幅度谱估计得到的幅度谱进行加权融合。仿真实验中,在10种不同噪声环境中,通过多种评价标准证明所提算法能取得较好的增强效果。 展开更多
关键词 稀疏非负矩阵分解 交替方向乘子法 算法融合
下载PDF
非负张量分解的快速算法 被引量:3
6
作者 史加荣 杨威 姜淑艳 《计算机应用研究》 CSCD 北大核心 2011年第12期4475-4477,共3页
作为非负矩阵分解的多线性推广,非负张量分解已被成功地应用在信号处理、计算机视觉、数据挖掘和神经科学等领域中。提出了非负张量分解的一种快速算法。首先,将大的张量数据视做多元连续函数的离散化,对其进行采样得到一个小张量;其次... 作为非负矩阵分解的多线性推广,非负张量分解已被成功地应用在信号处理、计算机视觉、数据挖掘和神经科学等领域中。提出了非负张量分解的一种快速算法。首先,将大的张量数据视做多元连续函数的离散化,对其进行采样得到一个小张量;其次,对小张量执行非负分解,可得到它的重构张量;然后,对于采样后的重构张量,使用二维线性插值方法对原始张量进行重构;最后,实验结果表明快速张量分解算法的有效性。 展开更多
关键词 非负张量分解 非负矩阵分解 快速算法 采样 插值 重构
下载PDF
基于FFST和方向特性对比度的图像融合算法 被引量:6
7
作者 陈清江 魏冰蔗 +1 位作者 柴昱洲 张彦博 《激光与红外》 CAS CSCD 北大核心 2016年第7期890-895,共6页
为了克服红外可见光图像融合方法存在的不足,结合快速有限剪切波变换(Fast Finite Shearlet Transform,FFST)的平移不变性以及较高的方向敏感性,提出了一种基于快速有限剪切波变换域的自适应多方向图像融合新方法。首先,对严格配准后的... 为了克服红外可见光图像融合方法存在的不足,结合快速有限剪切波变换(Fast Finite Shearlet Transform,FFST)的平移不变性以及较高的方向敏感性,提出了一种基于快速有限剪切波变换域的自适应多方向图像融合新方法。首先,对严格配准后的图像进行快速有限剪切波变换分解,得到低频子带和高频子带系数;然后,对低频子带系数采用非负矩阵分解的一个约束稀疏算法,即在基本非负矩阵分解的优化函数中施加稀疏性约束,使分解更优,以此来提高重构后图像的清晰度;高频子带系数则采用联合方向特性的对比度进行选取,以得到丰富的细节信息。最后,利用快速有限剪切波逆变换得到重构后的图像。实验结果表明,融合后的图像充分结合了源图像的有用信息,整体轮廓清晰,在客观评价上也有一定的提高。 展开更多
关键词 快速有限剪切波(FFST) 图像融合 非负矩阵分解 对比度
下载PDF
基于联合非负矩阵分解的协同过滤推荐算法 被引量:7
8
作者 黄波 严宣辉 林建辉 《模式识别与人工智能》 EI CSCD 北大核心 2016年第8期725-734,共10页
为了揭示复杂网络结构间存在的隐藏关系,更加准确地向用户推荐物品的效果,并基于联合非负矩阵分解(JNMF)能揭示复杂网络结构间关系的特性,提出利用JNMF并结合基于用户的协同过滤和基于物品的协同过滤的推荐算法,并证明文中算法的正确性... 为了揭示复杂网络结构间存在的隐藏关系,更加准确地向用户推荐物品的效果,并基于联合非负矩阵分解(JNMF)能揭示复杂网络结构间关系的特性,提出利用JNMF并结合基于用户的协同过滤和基于物品的协同过滤的推荐算法,并证明文中算法的正确性和收敛性.实验表明,文中算法能有效结合基于用户的协同过滤算法和基于物品的协同过滤算法,在一定程度上降低推荐的平均绝对偏差,提高推荐的准确性. 展开更多
关键词 联合非负矩阵分解(JNMF) 推荐算法 协同过滤 平均绝对偏差
下载PDF
一种非负矩阵分解的快速方法 被引量:9
9
作者 王文俊 张军英 《计算机工程与应用》 CSCD 北大核心 2009年第25期1-2,6,共3页
针对超高维数据进行非负矩阵分解的计算代价大,特征提取速度慢问题,提出一种非负矩阵分解的快速算法。该算法通过代数变换,把对原高维矩阵的非负分解转换成非负的低维矩阵的非负分解,其求解过程只需要对一个阶数等于样本数的对角矩阵进... 针对超高维数据进行非负矩阵分解的计算代价大,特征提取速度慢问题,提出一种非负矩阵分解的快速算法。该算法通过代数变换,把对原高维矩阵的非负分解转换成非负的低维矩阵的非负分解,其求解过程只需要对一个阶数等于样本数的对角矩阵进行非负矩阵分解,同时提取某样本特征时只需要计算该样本与所有训练样本的内积。对高维小样本的基因表达数据降维后进行k均值聚类分析,实验结果表明,该算法在不影响非负矩阵分解性能的前提下,大大提高了计算速度。 展开更多
关键词 非负矩阵分解 基因表达数据 快速算法
下载PDF
改进非负矩阵分解的神经网络人脸识别 被引量:5
10
作者 郑明秋 杨帆 《液晶与显示》 CAS CSCD 北大核心 2017年第3期213-218,共6页
为了提高人脸识别正确率,提出基于改进非负矩阵分解的神经网络人脸识别算法。首先利用改进的非负矩阵分解对人脸图像进行特征提取,提高非负矩阵分解速度。接着将提取出的特征信息作为神经网络学习入口进行特征训练,由于神经网络在学习... 为了提高人脸识别正确率,提出基于改进非负矩阵分解的神经网络人脸识别算法。首先利用改进的非负矩阵分解对人脸图像进行特征提取,提高非负矩阵分解速度。接着将提取出的特征信息作为神经网络学习入口进行特征训练,由于神经网络在学习过程中,容易出现局部最小值且收敛速度慢等问题,为此采用改进的遗传算法对神经网络进行优化处理,获得最终的人脸识别结果。实验结果表明:利用改进的非负矩阵分解方法能够降低神经网络的分类训练负荷量和运算量,提高人脸识别识别率。通过和各种方法比较可知,本方法的人脸识别率都较高。本方法人脸特征分解速度快,提高了神经网络训练前期精度和收敛速度,使得人脸识别正确率高。当特征向量个数达到40以上时,人脸识别正确率保持95%以上。 展开更多
关键词 机器视觉 人脸识别 非负矩阵分解 遗传算法 神经网络
下载PDF
基于模糊核聚类和支持向量机的鲁棒协同推荐算法 被引量:7
11
作者 伊华伟 张付志 巢进波 《电子与信息学报》 EI CSCD 北大核心 2017年第8期1942-1949,共8页
该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后... 该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后,利用支持向量机分类器对含有攻击概貌的聚类进行分类,实现攻击概貌的第2阶段检测。最后,基于攻击概貌检测结果,通过构造指示函数排除攻击概貌在推荐过程中产生的影响,并引入矩阵分解技术设计相应的鲁棒协同推荐算法。实验结果表明,与现有的基于矩阵分解模型的推荐算法相比,所提算法不但具有很好的鲁棒性,而且准确性也有提高。 展开更多
关键词 鲁棒推荐算法 托攻击 矩阵分解 模糊核聚类 支持向量机
下载PDF
基于粒子群优化的非平滑非负矩阵分解算法 被引量:3
12
作者 戴华平 王旭 +1 位作者 胡红亮 王玉涛 《计算机工程》 CAS CSCD 2013年第1期204-207,212,共5页
传统的非平滑约束的非负矩阵分解算法(nsNMF)在处理高光谱数据时,存在对初始值敏感、容易陷入局部最优值等缺陷。为此,提出一种基于粒子群优化(PSO)的nsNMF算法。采用传统nsNMF算法迭代的结果作为初始值,以避免PSO的盲目搜索。通过PSO... 传统的非平滑约束的非负矩阵分解算法(nsNMF)在处理高光谱数据时,存在对初始值敏感、容易陷入局部最优值等缺陷。为此,提出一种基于粒子群优化(PSO)的nsNMF算法。采用传统nsNMF算法迭代的结果作为初始值,以避免PSO的盲目搜索。通过PSO搜索端元光谱矩阵,利用nsNMF算法更新端元光谱矩阵和丰度矩阵,以缩小搜索空间,降低计算复杂度,避免陷入局部最优。在合成数据集和真实数据集上的实验结果表明,与传统nsNMF算法相比,该算法能获得更好的全局最优解,端元光谱和丰度值更接近真实值。 展开更多
关键词 非负矩阵分解 粒子群优化算法 高光谱 线性光谱模型 全局最小值 稀疏性
下载PDF
基于增量式聚类和矩阵分解的鲁棒推荐方法 被引量:3
13
作者 徐玉辰 刘真 张付志 《小型微型计算机系统》 CSCD 北大核心 2015年第4期689-695,共7页
现有基于矩阵分解的推荐算法在面对"托"攻击时鲁棒性较差,而且随着用户和项目的增加需要进行模型重构,时间代价较高.针对上述问题,提出一种基于增量式聚类和矩阵分解的鲁棒推荐方法.首先,采用基于k-median聚类的用户评分矩阵... 现有基于矩阵分解的推荐算法在面对"托"攻击时鲁棒性较差,而且随着用户和项目的增加需要进行模型重构,时间代价较高.针对上述问题,提出一种基于增量式聚类和矩阵分解的鲁棒推荐方法.首先,采用基于k-median聚类的用户评分矩阵分块算法对用户评分矩阵中的相似用户进行聚类,构建用户评分矩阵分块,并对每个分块进行鲁棒矩阵分解建立推荐模型;然后,针对新增用户(项目),利用增量式聚类算法对用户评分矩阵分块进行更新,并采用基于加权信息熵的线性回归方法,对新增用户(项目)的特征向量进行局部参数估计.在Movie Lens 1M数据集上的实验结果表明,本文提出的推荐方法不仅具有较高的推荐精度和鲁棒性,而且模型更新的时间明显减少. 展开更多
关键词 鲁棒推荐算法 增量式聚类 矩阵分解 信息熵 模型更新
下载PDF
遥感图像配准的稳健投影非负矩阵分解方法 被引量:1
14
作者 段西发 田铮 +1 位作者 齐培艳 贺飞跃 《计算机工程与应用》 CSCD 2013年第7期28-34,97,共8页
由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同... 由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同投影空间,利用在共同投影空间的投影来配准形变目标。为验证该算法的有效性,做了两个实验:2008年5月12日汶川地震前后的SAR图像的配准;唐家山堰塞湖的变化检测。与现有方法进行比较,结果表明该方法能够有效地得到形变目标的共同投影空间,并取得了很好的配准结果;同时,堰塞湖的变化检测也得到了很好的结果。 展开更多
关键词 遥感图像 形变目标 非负矩阵分解 稳健的投影非负矩阵分解 投影空间 异常值
下载PDF
NMF和增强奇异值分解的自适应零水印算法 被引量:3
15
作者 肖振久 宁秋莹 +2 位作者 张晗 唐晓亮 陈虹 《计算机应用研究》 CSCD 北大核心 2020年第4期1144-1148,1153,共6页
针对奇异值分解水印算法导致虚警率高、稳健性不强的问题,提出一种基于分块非负矩阵分解(NMF)和增强奇异值分解(BN-SVD)相结合的自适应零水印算法。首先将原始灰度图像进行二级离散小波变换(DWT),对变换后的二级低频子带(LL2)进行不重... 针对奇异值分解水印算法导致虚警率高、稳健性不强的问题,提出一种基于分块非负矩阵分解(NMF)和增强奇异值分解(BN-SVD)相结合的自适应零水印算法。首先将原始灰度图像进行二级离散小波变换(DWT),对变换后的二级低频子带(LL2)进行不重叠分块,并对每一个子块进行秩为r的NMF分解;然后对NMF分解得到的特征矩阵采用增强奇异值分解,依据每一个块矩阵的最大奇异值与整体最大奇异值均值的大小关系构成特征向量;利用生成的特征向量与经过Arnold变换与混沌映射双重置乱加密水印图像作异或运算生成零水印,并利用天牛须优化算法(BAS)自适应确定增强奇异值分解中最抗攻击缩放比例的参数β。实验结果表明,在虚警问题上NC值达到0.4以下,JPEG压缩、噪声、滤波、旋转、剪切以及混合攻击下,提取水印图像与原水印图像的归一化系数NC值均可达到99%以上,该方案高效地解决了虚警问题,具有较强的稳健性,能够有效地抵抗各种攻击。 展开更多
关键词 非负矩阵分解 增强奇异值分解 ARNOLD变换 LOGISTIC映射 天牛须优化算法
下载PDF
基于降噪关系正则化的微博用户标签推荐 被引量:4
16
作者 刘慧婷 郭孝雪 +1 位作者 程雷 赵鹏 《模式识别与人工智能》 EI CSCD 北大核心 2017年第10期907-916,共10页
现有微博用户标签推荐方法大多依靠好友关系或内容进行推荐,并不能解决微博中存在的从众关系(噪音关系)及用户标签稀疏问题.因此,文中提出基于降噪关系正则化的微博用户标签推荐算法.通过LDA对用户的博文进行主题分析,衡量用户好友兴趣... 现有微博用户标签推荐方法大多依靠好友关系或内容进行推荐,并不能解决微博中存在的从众关系(噪音关系)及用户标签稀疏问题.因此,文中提出基于降噪关系正则化的微博用户标签推荐算法.通过LDA对用户的博文进行主题分析,衡量用户好友兴趣相似度,降低无共同兴趣的好友对目标用户的影响.将得到的降噪关系作为正则化项引入到用户标签非负矩阵分解模型中,解决用户标签稀疏问题.通过拉格朗日乘子法和KKT条件对模型进行优化和约束,最终得到近似的用户标签矩阵,为用户进行标签推荐.实验表明文中算法推荐质量较优. 展开更多
关键词 推荐算法 主题模型 非负矩阵分解(NMF) 社交网络 用户标签
下载PDF
一种基于L_1稀疏正则化和非负矩阵分解的盲源信号分离新算法 被引量:7
17
作者 殷海青 刘红卫 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期835-841,共7页
针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储... 针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储量,提高算法速度,而且还很好地刻画了信号的稀疏性和独立性.理论分析和数值试验都验证了该方法的有效性,对混合的二维图像能提高分离的信干比. 展开更多
关键词 盲源信号分离 反问题 非负矩阵分解 投影梯度算法 信干比
下载PDF
基于MPI和OpenMP混合编程的非负矩阵分解并行算法 被引量:8
18
作者 唐兵 Laurent BOBELIN 贺海武 《计算机科学》 CSCD 北大核心 2017年第3期51-54,共4页
非负矩阵分解(NMF)作为一种数据降维和特征提取的有效工具,已经在文本聚类、推荐系统等多个领域得到应用,但是其计算过程比较复杂。对此,提出一种基于MPI+OpenMP的混合层次化并行NMF方法,其充分利用基于MPI的消息传递模型和基于OpenMP... 非负矩阵分解(NMF)作为一种数据降维和特征提取的有效工具,已经在文本聚类、推荐系统等多个领域得到应用,但是其计算过程比较复杂。对此,提出一种基于MPI+OpenMP的混合层次化并行NMF方法,其充分利用基于MPI的消息传递模型和基于OpenMP的共享存储模型各自的优势,并基于多核节点集群进行测试。实验结果表明,所设计的并行NMF算法达到了较高的加速比,能有效处理高阶矩阵的非负分解,极大地提高了计算的效率。 展开更多
关键词 非负矩阵分解 并行算法 MPI OpenMPI 可扩展
下载PDF
基于非线性特征和Cauchy加权M-估计量的鲁棒推荐算法 被引量:5
19
作者 张付志 孙双侠 伊华伟 《计算机学报》 EI CSCD 北大核心 2017年第6期1453-1469,共17页
协同推荐系统作为一种重要的个性化服务模式,在电子商务站点中的应用越来越广泛.然而,各种恶意欺骗和虚假反馈已制约了其应有效能的发挥.如何有效识别和抵御托攻击,确保系统推荐的可信性,是推荐系统研究面临的一大挑战.为了确保推荐的... 协同推荐系统作为一种重要的个性化服务模式,在电子商务站点中的应用越来越广泛.然而,各种恶意欺骗和虚假反馈已制约了其应有效能的发挥.如何有效识别和抵御托攻击,确保系统推荐的可信性,是推荐系统研究面临的一大挑战.为了确保推荐的可信性,人们提出了各种基于矩阵分解的鲁棒协同推荐算法.但是这些推荐算法在面对托攻击时不仅精度损失大,而且鲁棒性较差.为此,该文提出一种基于非线性特征和Cauchy加权M-估计量的鲁棒推荐算法.首先,采用核主成分分析方法提取用户评分矩阵的非线性特征,以充分挖掘推荐系统中用户(或项目)之间的内在关联,最大限度地保留用户和项目的特征信息,提高推荐精度和鲁棒性;然后,引入鲁棒统计中的Cauchy加权M-估计量,并联合矩阵分解模型对用户和项目特征矩阵进行鲁棒参数估计,以限制攻击概貌对参数估计过程产生的影响;最后,设计相应的鲁棒协同推荐算法,并在MovieLens和Netflix数据集上对算法的有效性进行评价.实验结果表明:该文算法在推荐精度和鲁棒性方面明显优于现有的鲁棒推荐算法. 展开更多
关键词 托攻击 鲁棒推荐算法 核函数 Cauchy加权M-估计量 矩阵分解 协同推荐系统 人工智能
下载PDF
基于孪生非负矩阵分解的车脸重识别算法 被引量:3
20
作者 贾旭 孙福明 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期132-139,共8页
受光照强度变化影响,同一车辆在不同时段采集的车脸图像可能会存在差异,如车身颜色、车灯状态等,为了使识别方法对多种光照条件具有普适性,提出了一种孪生非负矩阵分解模型。首先,将每一对训练样本车脸图像的初始特征分配在两个非负矩... 受光照强度变化影响,同一车辆在不同时段采集的车脸图像可能会存在差异,如车身颜色、车灯状态等,为了使识别方法对多种光照条件具有普适性,提出了一种孪生非负矩阵分解模型。首先,将每一对训练样本车脸图像的初始特征分配在两个非负矩阵分解模型中;然后,融合分解后的误差损失,类内损失,类间损失,设计了一种孪生非负矩阵分解模型,其中,两个非负矩阵分解模型共享同一特征基;最后,基于梯度下降法对模型进行求解,获得共享特征基,并基于余弦距离实现了车脸图像的匹配。实验结果表明,对于存在一定光照差异条件下采集的两幅车脸图像,提出的算法仍能获得较为准确的重识别结果,错误接受率与错误拒绝率均可降低至6%以下。 展开更多
关键词 车脸重识别 非负矩阵分解 梯度下降法 车脸特征提取
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部