This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistic...This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method.展开更多
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr...In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity ...Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity and eccentricity of the rolls are quasi-periodic with a frequency that varies with their rotation speed. An adaptive method of rejection of these disturbances is proposed in this paper. It is based on a phase-locked loop structure that estimates simutaneously the phase and magnitude of the perturbation and then cancels it. This algorithm can be plugged in an existing industrial controller. The stability and robustness of the algorithm are also discussed. The ability of the algorithm to reject quasi-periodic disturbances with slowly varying frequencies is shown through simulation results.展开更多
This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which u...This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which uses genetic algorithm (GA) as the optimization tool to derive the most robust solution of the state-feedback gain matrix K. The method can guarantee the resulting closed-loop poles to remain in a specified allocation region despite plant parameter uncertainty. Thus, the longitudinal stability of the airship is augmented by robustly assigning the closed-loop poles in a prescribed region of the left half s-plane.展开更多
Due to the recent proliferation of cyber-attacks,highly robust wireless sensor networks(WSN)become a critical issue as they survive node failures.Scale-free WSN is essential because they endure random attacks effectiv...Due to the recent proliferation of cyber-attacks,highly robust wireless sensor networks(WSN)become a critical issue as they survive node failures.Scale-free WSN is essential because they endure random attacks effectively.But they are susceptible to malicious attacks,which mainly targets particular significant nodes.Therefore,the robustness of the network becomes important for ensuring the network security.This paper presents a Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization(RHAFS-SA)Algorithm.It is introduced for improving the robust nature of free scale networks over malicious attacks(MA)with no change in degree distribution.The proposed RHAFS-SA is an enhanced version of the Improved Artificial Fish Swarm algorithm(IAFSA)by the simulated annealing(SA)algorithm.The proposed RHAFS-SA algorithm eliminates the IAFSA from unforeseen vibration and speeds up the convergence rate.For experimentation,free scale networks are produced by the Barabási–Albert(BA)model,and real-world networks are employed for testing the outcome on both synthetic-free scale and real-world networks.The experimental results exhibited that the RHAFS-SA model is superior to other models interms of diverse aspects.展开更多
A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For ...A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.展开更多
Performance analysis is very important in the study and design of scene matching algorithm. Based on the analysis of the common performance parameters, robustness of scene matching algorithm is defined, including the ...Performance analysis is very important in the study and design of scene matching algorithm. Based on the analysis of the common performance parameters, robustness of scene matching algorithm is defined, including the definitions of robust stability and robust performance, and the corresponding evaluation parameters matching margin and matching adaptability are given. With application of these robustness parameters on 8 scene matching algorithms, quantitative analysis results of algorithm robustness are obtained. The paper provides an important theoretical reference to the performance evaluation of scene matching algorithm.展开更多
Digital Watermarking is a technology, to facilitate the authentication, copyright protection and Security of digital media. The objective of developing a robust watermarking technique is to incorporate the maximum pos...Digital Watermarking is a technology, to facilitate the authentication, copyright protection and Security of digital media. The objective of developing a robust watermarking technique is to incorporate the maximum possible robustness without compromising with the transparency. Singular Value Decomposition (SVD) using Firefly Algorithm provides this objective of an optimal robust watermarking technique. Multiple scaling factors are used to embed the watermark image into the host by multiplying these scaling factors with the Singular Values (SV) of the host audio. Firefly Algorithm is used to optimise the modified host audio to achieve the highest possible robustness and transparency. This approach can significantly increase the quality of watermarked audio and provide more robustness to the embedded watermark against various attacks such as noise, resampling, filtering attacks etc.展开更多
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h...Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金the Department of Education of Liaoning Province(Grant No.JDL2020020)the Changzhou Applied Basic Research Program(Grant No.CJ2020007).
文摘This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method.
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
文摘In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
文摘Winding and web transport systems are subjected to quasi-periodic disturbances of the web tension due to the eccentricity and the non-circularity of the reel and rolls. The disturbances induced by the non-circularity and eccentricity of the rolls are quasi-periodic with a frequency that varies with their rotation speed. An adaptive method of rejection of these disturbances is proposed in this paper. It is based on a phase-locked loop structure that estimates simutaneously the phase and magnitude of the perturbation and then cancels it. This algorithm can be plugged in an existing industrial controller. The stability and robustness of the algorithm are also discussed. The ability of the algorithm to reject quasi-periodic disturbances with slowly varying frequencies is shown through simulation results.
文摘This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which uses genetic algorithm (GA) as the optimization tool to derive the most robust solution of the state-feedback gain matrix K. The method can guarantee the resulting closed-loop poles to remain in a specified allocation region despite plant parameter uncertainty. Thus, the longitudinal stability of the airship is augmented by robustly assigning the closed-loop poles in a prescribed region of the left half s-plane.
文摘Due to the recent proliferation of cyber-attacks,highly robust wireless sensor networks(WSN)become a critical issue as they survive node failures.Scale-free WSN is essential because they endure random attacks effectively.But they are susceptible to malicious attacks,which mainly targets particular significant nodes.Therefore,the robustness of the network becomes important for ensuring the network security.This paper presents a Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization(RHAFS-SA)Algorithm.It is introduced for improving the robust nature of free scale networks over malicious attacks(MA)with no change in degree distribution.The proposed RHAFS-SA is an enhanced version of the Improved Artificial Fish Swarm algorithm(IAFSA)by the simulated annealing(SA)algorithm.The proposed RHAFS-SA algorithm eliminates the IAFSA from unforeseen vibration and speeds up the convergence rate.For experimentation,free scale networks are produced by the Barabási–Albert(BA)model,and real-world networks are employed for testing the outcome on both synthetic-free scale and real-world networks.The experimental results exhibited that the RHAFS-SA model is superior to other models interms of diverse aspects.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160) and the National Natural Science Foundation of China ( No. 60874066).
文摘A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.
文摘Performance analysis is very important in the study and design of scene matching algorithm. Based on the analysis of the common performance parameters, robustness of scene matching algorithm is defined, including the definitions of robust stability and robust performance, and the corresponding evaluation parameters matching margin and matching adaptability are given. With application of these robustness parameters on 8 scene matching algorithms, quantitative analysis results of algorithm robustness are obtained. The paper provides an important theoretical reference to the performance evaluation of scene matching algorithm.
文摘Digital Watermarking is a technology, to facilitate the authentication, copyright protection and Security of digital media. The objective of developing a robust watermarking technique is to incorporate the maximum possible robustness without compromising with the transparency. Singular Value Decomposition (SVD) using Firefly Algorithm provides this objective of an optimal robust watermarking technique. Multiple scaling factors are used to embed the watermark image into the host by multiplying these scaling factors with the Singular Values (SV) of the host audio. Firefly Algorithm is used to optimise the modified host audio to achieve the highest possible robustness and transparency. This approach can significantly increase the quality of watermarked audio and provide more robustness to the embedded watermark against various attacks such as noise, resampling, filtering attacks etc.
文摘Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.