Dariyan (Shuaiba) Formation is one of the main reservoir units in the Persian Gulf and South Western Iran. The microfacies and depositional environment of this formation is been investigated in the current study and i...Dariyan (Shuaiba) Formation is one of the main reservoir units in the Persian Gulf and South Western Iran. The microfacies and depositional environment of this formation is been investigated in the current study and influencing factors in reservoir characteristics have been discussed for Dariyan reservoir in the Soroush oil field. Facies analysis conducted on core and cutting samples indicated that Dariyan Formation is mainly deposited on a carbonate ramp setting with a shallow intra shelf basin. In addition, it has been demonstrated that facies changes reflect the main controls of the tectonic and climate (sea level fluctuations) during the deposition of these sediments. To determine the reservoir unites in this formation, 5 electrofacies were determined by neural network method that it is using different petrophysical logs (i.e. GR, PHIE and SWE). Using rock typing as the best way to establish an association between the various collected data (e.g. logs and cores) and geological descriptions 4 hydraulic flow units or rock types, determined on the basis of the Flow Zone Indicator (FZI) method in the Dariyan Formation of the Soroush field. Establishing a correlation between microfacies and rock types, the carbonate zones with moderate to good reservoir properties and also the intervals with the highest reservoir quality were determined.展开更多
Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distin...Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distinct rock types.Generally,these methods are applied to petrophysical data that are measured at a pressure other than reservoir pressure.Since the pressure changes the pore structure of rock,the effect of overburden pressure on rock typing should be considered.In this study,porosity and permeability of 113 core samples were measured at five different pressures.To investigate the effect of pressure on determination of rock types,FZI,FZI~*and Winland methods were applied.Results indicated that although most of the samples remain in the same rock type when pressure changes,some of them show different trends.These are related to the mineralogy and changes in pore system of the samples due to pressure change.Additionally,the number of rock types increases with increasing pressure.Furthermore,the effect of overburden pressure on determination of rock types is more clearly observed in the Winland and FZI~*methods.Also,results revealed that a more precise reservoir dynamic simulation can be obtained by considering the reservoir rock typing process at reservoir conditions.展开更多
We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our...We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our result,the rock density values in Hong Kong vary from 2101 to 2681 kg·m^(-3).These density values are typically smaller than the average density of 2670 kg·m^(-3),often adopted to represent the average density of the upper continental crust in physical geodesy and gravimetric geophysics applications.This finding reflects that the geological configuration in Hong Kong is mainly formed by light volcanic formations and lava flows with overlying sedimentary deposits at many locations,while the percentage of heavier metamorphic rocks is very low(less than 1%).This product will improve the accuracy of a detailed geoid model and orthometric heights.展开更多
Due to the complicated lithology in the ES3 Member of the Shahejie Formation in the Shulu sag,Jizhong depression,it is difficult to classify the rock types and characterize the reservoirs at the marl intervals.In this...Due to the complicated lithology in the ES3 Member of the Shahejie Formation in the Shulu sag,Jizhong depression,it is difficult to classify the rock types and characterize the reservoirs at the marl intervals.In this paper,a four-element classification method has been proposed,and seven rock types have been identified by analyzing the mineral composition.The primary rock types are medium-high organic carbonate rocks and medium-high organic shaly-siliceous carbonate rocks.With the methods of field emission scanning electron microscopy,high-pressure mercury intrusion,nitrogen adsorption,and nano-CT,four types of reservoir spaces have been identified,including intra-granular pores,intergranular pores(inter-crystalline pores),organic pores,and micro-fractures.By combining the method of high-pressure mercury intrusion with the method of the nitrogen adsorption,the porosity of the marl has been measured,ranging from 0.73%to 5.39%.The distribution of the pore sizes is bimodal,and the pore types are dominated by micron pores.Through this study,it has been concluded that the sag area to the east of Well ST1H is the favorable area for the development of self-sourced and self-reservoired shale oil.According to the results of geochemical and reservoir analysis,the III Oil Group may have sweet spot layers.展开更多
The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrati...The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts ...The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.展开更多
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ...Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.展开更多
This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core...The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core description, petrographic studies and pore system evaluation are integrated for Balal oil field in the Persian Gulf. The grainstone facies are developed into three shoal subenvironments on a carbonate ramp platform: leeward, central and seaward. Compaction, dissolution, cementation, anhydrite mineralization and dolomitization are the main diagenetic processes affecting the depositional pore system. Considering depositional and diagenetic features and pore types, the grainstones are classified into six rock types (RT 1 to RT6). Rock types 1, 2 and 5 have large pore throat sizes with inter- granular and touching vug pore types. In rock type 3, moldic pores lead to high porosity and low permeability. Rock types 4 and 6 are cemented by anhydrite, calcite and dolomite. Generally, RTs 1, 2, 3 and 5 are related to late Transgressive systems tract (TST) and early Highstand systems tracts (HST) and show fair to good reservoir quality. In contrast, RTs 4 and 6 of late HST system tract show lower poroperm values, due to evaporite mineralization. Characterization of the grainstone facies provides a comprehensive understanding of the reservoir zones of the Arab Formation.展开更多
This study focuses on the heterogeneity of the middle Miocene syn-rift Belayim nullipore(reefal)marine sequences in the Gulf of Suez and its impacts on reservoir quality.The sequences consist of coralline algal reef l...This study focuses on the heterogeneity of the middle Miocene syn-rift Belayim nullipore(reefal)marine sequences in the Gulf of Suez and its impacts on reservoir quality.The sequences consist of coralline algal reef limestones with a highly complex dual-porosity system of primary and secondary porosities of widely varying percentages.To achieve a precise mathematical modeling of these reservoir sequences,a workflow protocol was applied to separate these sequences into a number of hydraulic flow units(HFUs)and reservoir rock types(RRTs).This has been achieved by conducting a conventional core analysis on the nullipore marine sequence.To illustrate the heterogeneity of the nullipore reservoir,the Dykstra-Parsons coefficient(V)has been estimated(V=0.91),indicating an extremely heterogeneous reservoir.A slight to high anisotropy(λ_(k))has been assigned for the studied nullipore sequences.A stratigraphic modified Lorenz plot(SMLP)was applied to define the optimum number of HFUs and barriers/baffles in each of the studied wells.Integrating the permeability-porosity,reservoir quality index-normalized porosity index(RQI-NPI)and the RQI-flow zone indicator(RQIFZI)plots,the discrete rock types(DRT)and the R35 techniques enable the discrimination of the reservoir sequences into 4 RRTs/HFUs.The RRT4 packstone samples are characterized by the best reservoir properties(moderate permeability anisotropy,with a good-to-fair reservoir quality index),whereas the RRT1 mudstone samples have the lowest flow and storage capacities,as well as the tightest reservoir quality.展开更多
Upper Cambrian-Lower Ordovician shoal-facies carbonate rocks are well developed in the Yangjiap-ing section, Shimen, Hunan, and their types are also highly varied. There are both monomictic shoal-facies rocks (e.g. sp...Upper Cambrian-Lower Ordovician shoal-facies carbonate rocks are well developed in the Yangjiap-ing section, Shimen, Hunan, and their types are also highly varied. There are both monomictic shoal-facies rocks (e.g. sparite oolitic limestone and sparite calcarenite) and polymictic shoal-facies rocks (e.g. grainstone, whose grain types include sand- and pebble-sized fragments, bioclasts, oolites, algal mats etc.). What is different is that the Upper Cambrian shoal-facies rocks have been mostly strongly dolomitized into shoal-facies dolomite with various residual textures. This paper presents an in-depth study of various kinds of diagenesis and pore space evolution occurring in this section and suggests that the diagenetic sequences of shoal-facies rocks in the study area is dominantly of retrogressive type.展开更多
The geology, sediment and soil studies are important due to its significant impacts on agriculture, mining, constructions materials, industries, environment, ground water percolation, air pollution, surface and ground...The geology, sediment and soil studies are important due to its significant impacts on agriculture, mining, constructions materials, industries, environment, ground water percolation, air pollution, surface and ground water pollutions, earthquakes and geo-hazards in Afghanistan. In this research, we studied petrography, Sediment, tectonic structures, soil fraction selection by using hydrometer, sieving analysis, and geological mapping. Results show different kinds of metamorphic rocks of low grade and medium grade metamorphisms, Garnete mica Schist, Garnete Schist, Quarsite, different types of minerals among rocks. Further, type of sediment consisting residual angular (Autochthonous) and rounded (Allochthonous) transported by water, among sediments consisting Garnete, Gneiss, Schist, Quarsite, Biotite and consisting different type of sizes boulders, Cobble, Granule, Sand, Silt. Hydrometer analysis shows different types of soil clayey loam, sandy loam, silty loam. Moreover, Geological mapping shows complex tectonic structures like joints, cracks, faults, folds, anticline and syncline. The obtained<i> </i><span style="font-family:Verdana;">results suggest that the petrography, sediments and soil researches can be used efficiently for catchments of the Kabul Basin and other basins in Afghanistan.</span>展开更多
Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extrac...Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extraction planning and operations of the cement plant.This study aims to assess the geological uncertainty and associated risk in modeling a cement raw material deposit in southern Vietnam.For this deposit,soil,clay,laterite,and limestone are the four primary rock types,controlling the occurrence and spatial distribution of chemical grades.In this study,hierarchical simulation method was used to evaluate the uncertainty.Rock types were first simulated,and the chemical grades conditioning to the rock types were then generated.The results demonstrated the capability of the hierarchical simulation approach to incorporate the uncertainty of rock types in resource modeling and to allow evaluating the risks in providing the desired raw material for the cement plant in the form of grade-tonnage curves.展开更多
Based on the identification and enhancive processing of information about strata, structure, magmatite, and alteration in ore-concentrated area in the eastern Tianshan, an exploration mode of remote sensing geology is...Based on the identification and enhancive processing of information about strata, structure, magmatite, and alteration in ore-concentrated area in the eastern Tianshan, an exploration mode of remote sensing geology is established. The mode covers basic images composed of TM (7, 4, 1), Munsell space transformation for recognizing rock type, directional matched filtering for enhancing structures, multi-layer separating and extracting weak alteration information. It will provide a rapid and effective method for geological mapping and metallogenic prediction in this region.展开更多
The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires ...The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.展开更多
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ...Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.展开更多
"Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent ye..."Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent years given their safety,greenness,ease of manufacture,and cost-efficiency.Nevertheless,the practical application of ZIBs is largely hindered by the dendritic growth of the Zn metal anode,low Coulombic eficiency,great harm,and existence of various side reactions.Herein,this review provides a systematic overview of emerging"rocking chair"type ZIBs with zinc metal-free anodes.Firstly,the basic fundamen-tals,advantages,and challenges of“rocking chair”type ZIBs are introduced.Subsequently,an overview of the design principles and recent progress of"rocking chair"type ZIBs with zinc metal-free anodes are presented.Finally,the key challenges and perspectives for future advancement of"rocking chair"type ZiBs with zinc metal-free anodes are proposed.This review is anticipated to attracted increased focus to metal-free anodes"rocking chair"type metal-ion battery and provide new inspirations for the develop-ment of high-energy metal-ion batteries.展开更多
The Oligo-Miocene Asmari Formation is one of the most important hydrocarbon reservoirs in the Middle East.The oilfield under study is one of the largest oilfields in the Zagros basin with the Asmari Formation being th...The Oligo-Miocene Asmari Formation is one of the most important hydrocarbon reservoirs in the Middle East.The oilfield under study is one of the largest oilfields in the Zagros basin with the Asmari Formation being the major reservoir rock.In this study,petrographic analyses,petrophysical data and neural network clustering techniques were used for identifying rock types in the Asmari reservoir.Facies analysis of the Asmari Formation in the study area has resulted in the definition of 1 clastic lithofacies and 14 carbonate microfacies types.Using petrophysical logs from 43 wells and their correlation with capillary pressure(Pc)curves,led to the recognition of 7 electrofacies(EF1-EF7).Microscopic evidence of Electrofacies group C1 and S1 show that the sedimentary facies of these electrofacies are most commonly found in restricted and shoal facies belts zone.Also,petrographic studies show that the sedimentary facies of C2,C3,C4,S2 and S3 were formed in the open marine,Lagoon,and Tidal flat facies belt zone of homoclinal ramp sedimentary environment during the Oligo-Miocene based on relative sea level changes respectively.The link between electrofacies and geological data indicated that both sedimentary and diagenetic processes controlled the reservoir quality of the Asmari Formation.Porosity,permeability and water saturation were used to estimate the reservoir quality of each electrofacies.EFs 1 and 2 with high porosity and permeability,low water saturation is considered as the best reservoir with regard to sedimentary textures(dolowackestone and dolograinstone)and the effect of diagenetic processes such as dolomitization processes.Vuggy,growth framework and interparticle porosities are major in EF-2,while the intercrystalline porosity is the major type in EF-1.EFs 3 and 4 show low values of porosity,permeability and high percentage of water saturations,which characterizes them as poor reservoir rocks.Finally,EF-5 is the only electrofacies in the siliciclastic parts of the Asmari reservoir,which is composed of rounded and well-sorted quartz grains that are slightly cemented.In sandstone electrofacies,electrofacies EF-5(S1),is the best type of sandstone reservoir rock and to move towards electrofacies EF-7(S3),will reduce reservoir quality.In carbonate electrofacies,also,electrofacies no 1,the best type of carbonate reservoir rock can be observed and move towards electrofacie number 4,lower quality of reservoir rocks is seen.展开更多
This paper deals with the geology and geochemistry of the Gacun and Laochang large-sized marine volcanic rock-type Ag deposits in the Sanjiang(Tri-River) area of southwestern China and of the continental volcanic-subv...This paper deals with the geology and geochemistry of the Gacun and Laochang large-sized marine volcanic rock-type Ag deposits in the Sanjiang(Tri-River) area of southwestern China and of the continental volcanic-subvolcanic rock-type Ag deposits in the Tianshan area of Xinjiang, and in the East area,China. It is considered that the marine volcanic rock-type Ag deposits occur mainly in the second-ordered volcano-sedimentary basins developed in island-arc and rift tectonic environments.The Ag deposits show an obvious zonation,with vein-network mineralization in the lower parts and hot water sedimentary rock-hosted stratified mineralization in the upper parts. From the Earth抯 surface downwards the ore-forming elements follows the order of As(Au)→Ag,Pb,Zn→Cu. The whole rock Rb-Sr isotopic isochron age of layered orebodies in the Gacun deposit is 204±14 Ma, indicating that the main stage of mineralization is Late Triassic in age. The continental volcanic-subvolcanic (porphyry) rock-type Ag deposits were formed later than the country rocks. The ores exhibit disseminated, veinlet disseminated, network and lumped structures. In addition, this study also deals with the geochemical characteristics of the continental volcanic-subvolcanic rock-type Ag deposits and the relations between Ag deposits or silver itself and fluorite, halogen-family elements and manganese.展开更多
文摘Dariyan (Shuaiba) Formation is one of the main reservoir units in the Persian Gulf and South Western Iran. The microfacies and depositional environment of this formation is been investigated in the current study and influencing factors in reservoir characteristics have been discussed for Dariyan reservoir in the Soroush oil field. Facies analysis conducted on core and cutting samples indicated that Dariyan Formation is mainly deposited on a carbonate ramp setting with a shallow intra shelf basin. In addition, it has been demonstrated that facies changes reflect the main controls of the tectonic and climate (sea level fluctuations) during the deposition of these sediments. To determine the reservoir unites in this formation, 5 electrofacies were determined by neural network method that it is using different petrophysical logs (i.e. GR, PHIE and SWE). Using rock typing as the best way to establish an association between the various collected data (e.g. logs and cores) and geological descriptions 4 hydraulic flow units or rock types, determined on the basis of the Flow Zone Indicator (FZI) method in the Dariyan Formation of the Soroush field. Establishing a correlation between microfacies and rock types, the carbonate zones with moderate to good reservoir properties and also the intervals with the highest reservoir quality were determined.
文摘Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distinct rock types.Generally,these methods are applied to petrophysical data that are measured at a pressure other than reservoir pressure.Since the pressure changes the pore structure of rock,the effect of overburden pressure on rock typing should be considered.In this study,porosity and permeability of 113 core samples were measured at five different pressures.To investigate the effect of pressure on determination of rock types,FZI,FZI~*and Winland methods were applied.Results indicated that although most of the samples remain in the same rock type when pressure changes,some of them show different trends.These are related to the mineralogy and changes in pore system of the samples due to pressure change.Additionally,the number of rock types increases with increasing pressure.Furthermore,the effect of overburden pressure on determination of rock types is more clearly observed in the Winland and FZI~*methods.Also,results revealed that a more precise reservoir dynamic simulation can be obtained by considering the reservoir rock typing process at reservoir conditions.
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories.”。
文摘We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our result,the rock density values in Hong Kong vary from 2101 to 2681 kg·m^(-3).These density values are typically smaller than the average density of 2670 kg·m^(-3),often adopted to represent the average density of the upper continental crust in physical geodesy and gravimetric geophysics applications.This finding reflects that the geological configuration in Hong Kong is mainly formed by light volcanic formations and lava flows with overlying sedimentary deposits at many locations,while the percentage of heavier metamorphic rocks is very low(less than 1%).This product will improve the accuracy of a detailed geoid model and orthometric heights.
基金supported by the National Basic Research Program of China(973 Program)(No.2014CB239001).
文摘Due to the complicated lithology in the ES3 Member of the Shahejie Formation in the Shulu sag,Jizhong depression,it is difficult to classify the rock types and characterize the reservoirs at the marl intervals.In this paper,a four-element classification method has been proposed,and seven rock types have been identified by analyzing the mineral composition.The primary rock types are medium-high organic carbonate rocks and medium-high organic shaly-siliceous carbonate rocks.With the methods of field emission scanning electron microscopy,high-pressure mercury intrusion,nitrogen adsorption,and nano-CT,four types of reservoir spaces have been identified,including intra-granular pores,intergranular pores(inter-crystalline pores),organic pores,and micro-fractures.By combining the method of high-pressure mercury intrusion with the method of the nitrogen adsorption,the porosity of the marl has been measured,ranging from 0.73%to 5.39%.The distribution of the pore sizes is bimodal,and the pore types are dominated by micron pores.Through this study,it has been concluded that the sag area to the east of Well ST1H is the favorable area for the development of self-sourced and self-reservoired shale oil.According to the results of geochemical and reservoir analysis,the III Oil Group may have sweet spot layers.
文摘The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金supported financially by the National Natural Scientific Foundation of China (Grants No. 40872069 and 41173059)the National Basic Research Program of China (973 Program) (Grants No. 2015CB453000)+1 种基金China Geological Survey (Grants No. 12120113095500)the Foundation of China Nuclear Geology (Grants No. 201148)
文摘The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.
基金partially supported by program for the New Century Excellent Talents in University (No. NCET-08-0833)the National Natural Science Foundation of China (No. 41040027)the Special Fund of Basic Research and Operating Expenses of China University of Mining and Technology, Beijing
文摘Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
基金the Research Institute of Petroleum Industry (RIPI),Tehran,for sponsorship
文摘The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core description, petrographic studies and pore system evaluation are integrated for Balal oil field in the Persian Gulf. The grainstone facies are developed into three shoal subenvironments on a carbonate ramp platform: leeward, central and seaward. Compaction, dissolution, cementation, anhydrite mineralization and dolomitization are the main diagenetic processes affecting the depositional pore system. Considering depositional and diagenetic features and pore types, the grainstones are classified into six rock types (RT 1 to RT6). Rock types 1, 2 and 5 have large pore throat sizes with inter- granular and touching vug pore types. In rock type 3, moldic pores lead to high porosity and low permeability. Rock types 4 and 6 are cemented by anhydrite, calcite and dolomite. Generally, RTs 1, 2, 3 and 5 are related to late Transgressive systems tract (TST) and early Highstand systems tracts (HST) and show fair to good reservoir quality. In contrast, RTs 4 and 6 of late HST system tract show lower poroperm values, due to evaporite mineralization. Characterization of the grainstone facies provides a comprehensive understanding of the reservoir zones of the Arab Formation.
基金the Researchers Supporting Project number(RSP-2020/92),King Saud University,Riyadh,Saudi Arabia。
文摘This study focuses on the heterogeneity of the middle Miocene syn-rift Belayim nullipore(reefal)marine sequences in the Gulf of Suez and its impacts on reservoir quality.The sequences consist of coralline algal reef limestones with a highly complex dual-porosity system of primary and secondary porosities of widely varying percentages.To achieve a precise mathematical modeling of these reservoir sequences,a workflow protocol was applied to separate these sequences into a number of hydraulic flow units(HFUs)and reservoir rock types(RRTs).This has been achieved by conducting a conventional core analysis on the nullipore marine sequence.To illustrate the heterogeneity of the nullipore reservoir,the Dykstra-Parsons coefficient(V)has been estimated(V=0.91),indicating an extremely heterogeneous reservoir.A slight to high anisotropy(λ_(k))has been assigned for the studied nullipore sequences.A stratigraphic modified Lorenz plot(SMLP)was applied to define the optimum number of HFUs and barriers/baffles in each of the studied wells.Integrating the permeability-porosity,reservoir quality index-normalized porosity index(RQI-NPI)and the RQI-flow zone indicator(RQIFZI)plots,the discrete rock types(DRT)and the R35 techniques enable the discrimination of the reservoir sequences into 4 RRTs/HFUs.The RRT4 packstone samples are characterized by the best reservoir properties(moderate permeability anisotropy,with a good-to-fair reservoir quality index),whereas the RRT1 mudstone samples have the lowest flow and storage capacities,as well as the tightest reservoir quality.
文摘Upper Cambrian-Lower Ordovician shoal-facies carbonate rocks are well developed in the Yangjiap-ing section, Shimen, Hunan, and their types are also highly varied. There are both monomictic shoal-facies rocks (e.g. sparite oolitic limestone and sparite calcarenite) and polymictic shoal-facies rocks (e.g. grainstone, whose grain types include sand- and pebble-sized fragments, bioclasts, oolites, algal mats etc.). What is different is that the Upper Cambrian shoal-facies rocks have been mostly strongly dolomitized into shoal-facies dolomite with various residual textures. This paper presents an in-depth study of various kinds of diagenesis and pore space evolution occurring in this section and suggests that the diagenetic sequences of shoal-facies rocks in the study area is dominantly of retrogressive type.
文摘The geology, sediment and soil studies are important due to its significant impacts on agriculture, mining, constructions materials, industries, environment, ground water percolation, air pollution, surface and ground water pollutions, earthquakes and geo-hazards in Afghanistan. In this research, we studied petrography, Sediment, tectonic structures, soil fraction selection by using hydrometer, sieving analysis, and geological mapping. Results show different kinds of metamorphic rocks of low grade and medium grade metamorphisms, Garnete mica Schist, Garnete Schist, Quarsite, different types of minerals among rocks. Further, type of sediment consisting residual angular (Autochthonous) and rounded (Allochthonous) transported by water, among sediments consisting Garnete, Gneiss, Schist, Quarsite, Biotite and consisting different type of sizes boulders, Cobble, Granule, Sand, Silt. Hydrometer analysis shows different types of soil clayey loam, sandy loam, silty loam. Moreover, Geological mapping shows complex tectonic structures like joints, cracks, faults, folds, anticline and syncline. The obtained<i> </i><span style="font-family:Verdana;">results suggest that the petrography, sediments and soil researches can be used efficiently for catchments of the Kabul Basin and other basins in Afghanistan.</span>
文摘Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extraction planning and operations of the cement plant.This study aims to assess the geological uncertainty and associated risk in modeling a cement raw material deposit in southern Vietnam.For this deposit,soil,clay,laterite,and limestone are the four primary rock types,controlling the occurrence and spatial distribution of chemical grades.In this study,hierarchical simulation method was used to evaluate the uncertainty.Rock types were first simulated,and the chemical grades conditioning to the rock types were then generated.The results demonstrated the capability of the hierarchical simulation approach to incorporate the uncertainty of rock types in resource modeling and to allow evaluating the risks in providing the desired raw material for the cement plant in the form of grade-tonnage curves.
文摘Based on the identification and enhancive processing of information about strata, structure, magmatite, and alteration in ore-concentrated area in the eastern Tianshan, an exploration mode of remote sensing geology is established. The mode covers basic images composed of TM (7, 4, 1), Munsell space transformation for recognizing rock type, directional matched filtering for enhancing structures, multi-layer separating and extracting weak alteration information. It will provide a rapid and effective method for geological mapping and metallogenic prediction in this region.
基金founded by the National Natural Scientific Foundation of China(Grant No.40972218)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)(Grant Nos.G1323521125,G1323521225,G1323521325)
文摘The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.
基金by the National Natural Science Foundation of China(41772076,41672084,41372086,41503038)the National Key Research and Development Program of China(2016YFC0600105-04,2016YFC0600606)+1 种基金the Key Research and Development Program of Shandong Province(2017CXGC1601,2017CXGC1602,2017CXGC1603),the Special Fund for“Taishan Scholars”Project of Shandong Province.
文摘Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.
基金supported the National Natural Science Foundation of China(No.62101296)the Natural Science Foundation of Shaanxi Province(Nos.2021JQ-760 and 2021JQ-756).
文摘"Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent years given their safety,greenness,ease of manufacture,and cost-efficiency.Nevertheless,the practical application of ZIBs is largely hindered by the dendritic growth of the Zn metal anode,low Coulombic eficiency,great harm,and existence of various side reactions.Herein,this review provides a systematic overview of emerging"rocking chair"type ZIBs with zinc metal-free anodes.Firstly,the basic fundamen-tals,advantages,and challenges of“rocking chair”type ZIBs are introduced.Subsequently,an overview of the design principles and recent progress of"rocking chair"type ZIBs with zinc metal-free anodes are presented.Finally,the key challenges and perspectives for future advancement of"rocking chair"type ZiBs with zinc metal-free anodes are proposed.This review is anticipated to attracted increased focus to metal-free anodes"rocking chair"type metal-ion battery and provide new inspirations for the develop-ment of high-energy metal-ion batteries.
文摘The Oligo-Miocene Asmari Formation is one of the most important hydrocarbon reservoirs in the Middle East.The oilfield under study is one of the largest oilfields in the Zagros basin with the Asmari Formation being the major reservoir rock.In this study,petrographic analyses,petrophysical data and neural network clustering techniques were used for identifying rock types in the Asmari reservoir.Facies analysis of the Asmari Formation in the study area has resulted in the definition of 1 clastic lithofacies and 14 carbonate microfacies types.Using petrophysical logs from 43 wells and their correlation with capillary pressure(Pc)curves,led to the recognition of 7 electrofacies(EF1-EF7).Microscopic evidence of Electrofacies group C1 and S1 show that the sedimentary facies of these electrofacies are most commonly found in restricted and shoal facies belts zone.Also,petrographic studies show that the sedimentary facies of C2,C3,C4,S2 and S3 were formed in the open marine,Lagoon,and Tidal flat facies belt zone of homoclinal ramp sedimentary environment during the Oligo-Miocene based on relative sea level changes respectively.The link between electrofacies and geological data indicated that both sedimentary and diagenetic processes controlled the reservoir quality of the Asmari Formation.Porosity,permeability and water saturation were used to estimate the reservoir quality of each electrofacies.EFs 1 and 2 with high porosity and permeability,low water saturation is considered as the best reservoir with regard to sedimentary textures(dolowackestone and dolograinstone)and the effect of diagenetic processes such as dolomitization processes.Vuggy,growth framework and interparticle porosities are major in EF-2,while the intercrystalline porosity is the major type in EF-1.EFs 3 and 4 show low values of porosity,permeability and high percentage of water saturations,which characterizes them as poor reservoir rocks.Finally,EF-5 is the only electrofacies in the siliciclastic parts of the Asmari reservoir,which is composed of rounded and well-sorted quartz grains that are slightly cemented.In sandstone electrofacies,electrofacies EF-5(S1),is the best type of sandstone reservoir rock and to move towards electrofacies EF-7(S3),will reduce reservoir quality.In carbonate electrofacies,also,electrofacies no 1,the best type of carbonate reservoir rock can be observed and move towards electrofacie number 4,lower quality of reservoir rocks is seen.
文摘This paper deals with the geology and geochemistry of the Gacun and Laochang large-sized marine volcanic rock-type Ag deposits in the Sanjiang(Tri-River) area of southwestern China and of the continental volcanic-subvolcanic rock-type Ag deposits in the Tianshan area of Xinjiang, and in the East area,China. It is considered that the marine volcanic rock-type Ag deposits occur mainly in the second-ordered volcano-sedimentary basins developed in island-arc and rift tectonic environments.The Ag deposits show an obvious zonation,with vein-network mineralization in the lower parts and hot water sedimentary rock-hosted stratified mineralization in the upper parts. From the Earth抯 surface downwards the ore-forming elements follows the order of As(Au)→Ag,Pb,Zn→Cu. The whole rock Rb-Sr isotopic isochron age of layered orebodies in the Gacun deposit is 204±14 Ma, indicating that the main stage of mineralization is Late Triassic in age. The continental volcanic-subvolcanic (porphyry) rock-type Ag deposits were formed later than the country rocks. The ores exhibit disseminated, veinlet disseminated, network and lumped structures. In addition, this study also deals with the geochemical characteristics of the continental volcanic-subvolcanic rock-type Ag deposits and the relations between Ag deposits or silver itself and fluorite, halogen-family elements and manganese.