Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation gen...Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.展开更多
Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which ...Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.展开更多
Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative resea...Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.展开更多
For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking feat...For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry.展开更多
CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the cou...CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.展开更多
Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and ver...Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective,and the variations of jet flow field and rock stress with jet standoff distance of SC-CO_(2),water and nitrogen were studied.With the increase of jet standoff distance,the jet pressure of SC-CO_(2) decreases and the jet temperature difference increases.The SC-CO_(2) jet is higher in pressure than the nitrogen jet and differs little from the water jet.Temperature difference of SC-CO_(2) jet is 5 times that of water jet and more than 2.5 ti mes that of nitrogen jet when the jet standoff distance is larger than 10.The tem-perature stress is the main reason why SC-CO_(2) jet is superior to water and nitrogen jets in rock-breaking.The rock under the SC-CO_(2) jet has greater rock stress,effective rock-breaking jet standoff distance and rock-breaking area.The jet pressure plays a major role in rock-breaking when the jet standoff distance is small,while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large.The SC-CO_(2) jet is an efficient volume rock-breaking method,which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet.展开更多
At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line...At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the func- tional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installa- tion angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.展开更多
In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with...In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with that of a high-pressure water jet under the same operation conditions. The effects of five major factors that affect the rock-breaking performance of the high-pressure SC-CO2 jet, i.e., the nozzle diameter, the standoff distance, the jet pressure, the rock compressive strength and the jet temperature are experimentally determined. The experimental results indicate that the rock-breaking performance of the SC-CO2 jet is significantly improved over the high-pressure water jet. It is also found that the rock-breaking performance of the SC-CO2 jet is improved with the increase of the nozzle diameter or the standoff distance, until the nozzle diameter or the standoff distance reaches a certain critical value and after that it begins to deteriorate. The rock-breaking performance of the SC-CO2 jet improves monotonically with the increase of the jet pressure, while it shows a monotonic deterioration with the increase of the rock compressive strength. In addition, it is found that, under the same working conditions, the SC-CO2 jet can always provide a better rock-breaking performance than the subcritical liquid CO2 jet.展开更多
To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected...To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.展开更多
The development of new drilling methods is important for the exploration and production of oil fields.The pulsed jet is a drilling technology of high potentiality.This article proposes a new concept of suck-in pulsed ...The development of new drilling methods is important for the exploration and production of oil fields.The pulsed jet is a drilling technology of high potentiality.This article proposes a new concept of suck-in pulsed jet with self-excited oscillation,by which a full use of the hydraulic power can be made in the annular space.A hydrodynamic analysis of suck-in pulsed jet with self-excited oscillation is carried out by numerical simulations and rock-breaking experiments.It is shown that with the jet,a negative pressure zone will be formed in the oscillation cavity to ensure automatic sucking of enough annular fluids and the formation of an efficient pulsed jet.The rock-breaking and pressure testing results have verified the reliability of the numerical simulation.The research provides a basis for the development of the pulsed jet drilling technology.展开更多
Through the single row drilling experiment,this paper studied the regularity of the tooth shape parameter's influence to the disc teeth's rock-breaking effect,which provided some basis for the composite teeth ...Through the single row drilling experiment,this paper studied the regularity of the tooth shape parameter's influence to the disc teeth's rock-breaking effect,which provided some basis for the composite teeth type roller bit's combined experimental study and the structure design of the tooth type.This experimental research is only for the circular arc disc teeth which is arranged on the composite teeth type roller bit's main tooth.The experiments were designed using the method of orthogonal design and the results were analyzed by the fuzzy optimization method.The results show that the disc tooth's drilling effect is the best when the tip diameter is 2 mm,taper angle is 30and the groove number is 8,and the disc tooth's drilling effect is the second best when the tip diameter is 3 mm,taper angle is 30and the groove number is 7.The above two combined ways of drilling effect's difference is very small(the difference of the degree of the membership is 0.003).展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52175245 and 52274093)the Natural Science Foundation of Hubei Province (No.2021CFB462)the Knowledge Innovation Special Project of Wuhan (whkxjsj007)。
文摘Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.
基金This work was supported by the open fund project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in 2021(Grant No.PLN2021-18)City-school Science and Technology Strategic Cooperation Project of Nanchong City and Southwest Petroleum University(Grant No.SXHZ014)Postdoctoral Science Foundation of China(Grant No.2021M693909).
文摘Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.
基金supported by the National Natural Science Foundation of China(52004013,U1762211).
文摘Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.
基金supports from Natural Science Foundation of China(Grant No51274235)Shandong Provincial Natural Science Foundation(Grant No.ZR2019MEE120)the Major project of CNPC(Grant No.ZD2019-183-005).
文摘For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry.
基金This work was supported by the National Natural Science Foundation of China(No.52004236)Sichuan Science and Technology Program(No.2021JDRC0114)+4 种基金the Starting Project of Southwest Petroleum University(No.2019QHZ009)the China Postdoctoral Science Foundation(No.2020M673285)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University)Ministry of Education(No.202005009KF)the Chinese Scholarship Council(CSC)funding(No.202008515107).
文摘CO_(2) drilling is a promising underbalance drilling technology with great advantages,such as lower cutting force,intense cooling and excellent lubrication.However,in the underbalance drilling,the mechanism of the coupling CO_(2) jet and polycrystalline-diamond-compact(PDC)cutter are still unclear.Whereby,we established a coupled smoothed particle hydrodynamics/finite element method(SPH/FEM)model to simulate the composite rock-breaking of high-pressure CO_(2) jet&PDC cutter.Combined with the experimental research results,the mechanism of composite rock-breaking is studied from the perspectives of rock stress field,cutting force and jet field.The results show that the composite rock-breaking can effectively relieve the influence of vibration and shock on PDC cutter.Meanwhile,the high-pressure CO_(2) jet has a positive effect on carrying rock debris,which can effectively reduce the temperature rising and the thermal wear of the PDC cutter.In addition,the effects of CO_(2) jet parameters on composite rock-breaking were studied,such as jet impact velocity,nozzle diameter,jet injection angle and impact distance.The studies show that when the impact velocity of the CO_(2) jet is greater than 250 m/s,the CO_(2) jet could quickly break the rock.It is found that the optimal range of nozzle diameter is 1.5–2.5 mm,the best injection angle of CO_(2) jet is 60,the optimal impact distance is 10 times the nozzle diameter.The above studies could provide theoretical supports and technical guidance for composite rock-breaking,which is useful for the CO_(2) underbalance drilling and drill bit design.
基金Supported by the National Natural Science Foundation of China(51674158,51704324,51934004)。
文摘Aiming at the synergistic rock-breaking mechanism of supercritical carbon dioxide(SC-CO_(2))jet pressure and tem-perature difference,a heat-fluid-solid calculation model of rock-breaking stress was established and verified to be effective,and the variations of jet flow field and rock stress with jet standoff distance of SC-CO_(2),water and nitrogen were studied.With the increase of jet standoff distance,the jet pressure of SC-CO_(2) decreases and the jet temperature difference increases.The SC-CO_(2) jet is higher in pressure than the nitrogen jet and differs little from the water jet.Temperature difference of SC-CO_(2) jet is 5 times that of water jet and more than 2.5 ti mes that of nitrogen jet when the jet standoff distance is larger than 10.The tem-perature stress is the main reason why SC-CO_(2) jet is superior to water and nitrogen jets in rock-breaking.The rock under the SC-CO_(2) jet has greater rock stress,effective rock-breaking jet standoff distance and rock-breaking area.The jet pressure plays a major role in rock-breaking when the jet standoff distance is small,while the jet temperature difference plays a major role in rock-breaking when the jet standoff distance is large.The SC-CO_(2) jet is an efficient volume rock-breaking method,which results in tensile and shear failure on the rock surface under short time jet and large area tensile failure inside the rock simultaneously under long time jet.
基金supported by the National Natural Science Foundation of China(51075147)863 Project(2012AA041803)
文摘At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the func- tional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installa- tion angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.
基金the National Natural Science Foundation of China (Grant Nos. 50974130, 51034007)the National Key Basic Research and Development Program of China (973 Program, 2010CB226700)the Excellent Ph.D. Thesis Training Fund and Graduate Independent Innovation Project of China University of Petroleum(Grant No. 11CX06021A)
文摘In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with that of a high-pressure water jet under the same operation conditions. The effects of five major factors that affect the rock-breaking performance of the high-pressure SC-CO2 jet, i.e., the nozzle diameter, the standoff distance, the jet pressure, the rock compressive strength and the jet temperature are experimentally determined. The experimental results indicate that the rock-breaking performance of the SC-CO2 jet is significantly improved over the high-pressure water jet. It is also found that the rock-breaking performance of the SC-CO2 jet is improved with the increase of the nozzle diameter or the standoff distance, until the nozzle diameter or the standoff distance reaches a certain critical value and after that it begins to deteriorate. The rock-breaking performance of the SC-CO2 jet improves monotonically with the increase of the jet pressure, while it shows a monotonic deterioration with the increase of the rock compressive strength. In addition, it is found that, under the same working conditions, the SC-CO2 jet can always provide a better rock-breaking performance than the subcritical liquid CO2 jet.
基金Supported by National Science Fund for Distinguished Young Scholars(NO.51725404)Program of Introducing Talents of Discipline to Chinese Universities(NO.B17045)National Natural Science Foundation of China(NO.51521063)
文摘To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50974130)the Major State Basic Research Development Program of China (973 Program, Grant No. 2010CB226703)supported by the China University of Petroleum Ph. D. Thesis Excellent Training Fund (Grant No. Z10-04)
文摘The development of new drilling methods is important for the exploration and production of oil fields.The pulsed jet is a drilling technology of high potentiality.This article proposes a new concept of suck-in pulsed jet with self-excited oscillation,by which a full use of the hydraulic power can be made in the annular space.A hydrodynamic analysis of suck-in pulsed jet with self-excited oscillation is carried out by numerical simulations and rock-breaking experiments.It is shown that with the jet,a negative pressure zone will be formed in the oscillation cavity to ensure automatic sucking of enough annular fluids and the formation of an efficient pulsed jet.The rock-breaking and pressure testing results have verified the reliability of the numerical simulation.The research provides a basis for the development of the pulsed jet drilling technology.
基金The authors are grateful to Applied basic research project of Sichuan Province(No.2015JY0057)Natural science project of Sichuan Provincial Education Department(No.15ZA0046)for their financial support to carry out this research.The insightful and constructive comments of the anonymous reviewers are also gratefully acknowledged.
文摘Through the single row drilling experiment,this paper studied the regularity of the tooth shape parameter's influence to the disc teeth's rock-breaking effect,which provided some basis for the composite teeth type roller bit's combined experimental study and the structure design of the tooth type.This experimental research is only for the circular arc disc teeth which is arranged on the composite teeth type roller bit's main tooth.The experiments were designed using the method of orthogonal design and the results were analyzed by the fuzzy optimization method.The results show that the disc tooth's drilling effect is the best when the tip diameter is 2 mm,taper angle is 30and the groove number is 8,and the disc tooth's drilling effect is the second best when the tip diameter is 3 mm,taper angle is 30and the groove number is 7.The above two combined ways of drilling effect's difference is very small(the difference of the degree of the membership is 0.003).