期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Influence of Rolling Temperature in Supercooled Liquid Region on the Surface Morphology of Zr_(52.5)Al_(10)Ni_(10)Cu_(15)Be_(12.5) Bulk Metallic Glass
1
作者 王国明 方守狮 +1 位作者 华勤 肖学山 《Journal of Shanghai University(English Edition)》 CAS 2005年第5期458-461,共4页
Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic an... Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface. 展开更多
关键词 rolling temperature supercooled liquid region surface morphology Zr52.5Al10Ni10Cu15Be12.5 deformation mechanism.
下载PDF
Effects of final rolling temperature and coiling temperature on precipitates and microstructure of high-strength low-alloy pipeline steel 被引量:1
2
作者 Ya-dong Wang Zheng-hua Tang +2 位作者 Su-fen Xiao Charles WSiyasiya Tao Wei 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2022年第8期1236-1244,共9页
The strength-to-weight ratio is an important property of high-strength low-alloy(HSLA)steel in pipeline,whose precipitation strengthening can be improved.The final rolling temperature(FRT)and coiling temperature(CT)ar... The strength-to-weight ratio is an important property of high-strength low-alloy(HSLA)steel in pipeline,whose precipitation strengthening can be improved.The final rolling temperature(FRT)and coiling temperature(CT)are the key process parameters in the control of precipitates and microstructure.Continuous cooling rate was fixed at 10℃/s,and the effects of deformation and coiling temperatures on precipitates and microstructure of Ti-Nb microalloyed HSLA steel were investigated through thermo-mechanical controlled processing on Gleeble 3500.The microstructure is mainly acicular ferrite with high density dislocation and several microns scale.The size and volume fraction of the precipitates were studied under transmission electron microscopy.The results showed that the diameter of the precipitates was in the range between 4 and 240 nm.The optimized combination of parameters is FRT of 820℃and CT of 550℃,and the volume fraction of precipitates obtained under this process is 0.59%. 展开更多
关键词 PRECIPITATE Thermo-mechanical controlled processing Final rolling temperature Coiling temperature High-strength low-alloy steel (Ti Nb)C
原文传递
Influence of the finish rolling temperatures on the microstructure and texture evolution in the ferritic stainless steels 被引量:1
3
作者 Fei GAO Zhenyu LIU Haitao LIU Guodong WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2011年第5期343-350,共8页
The influence of the finish rolling temperature on the microstructure and texture evolution of Nb and B micro-alloyed ultra purified Cr17 ferritic stainless steels was investigated. The hot rolled bands were produced ... The influence of the finish rolling temperature on the microstructure and texture evolution of Nb and B micro-alloyed ultra purified Cr17 ferritic stainless steels was investigated. The hot rolled bands were produced by conventional rolling process and the finish rolling at relatively low temperatures or "warm rolling". The microstructure was observed by optical microscopy, scanning electron microscopy and transmission electron microscopy, and X-ray diffraction was used to characterize the texture evolution processes. The results showed that as compared to conventional hot rolling process, the warm rolling has led to the refined and homogeneous microstructure and uniform recrystallization texture along γ-fiber in final sheets, indicating that the finish rolling at relatively low temperatures can be the effective way to improve significantly the formability of final sheets. 展开更多
关键词 Ultra purified Cr17 ferritic stainless steel Finish rolling temperature MICROSTRUCTURE TEXTURE
原文传递
Effect of Finish Rolling Temperature on Microstructure and Mechanical Properties of High Grade Pipeline Steel 被引量:1
4
作者 TANG Xing-chang,KANG Yong-lin,BO Yan-yan (School of Materials Science and Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期625-628,共4页
The correlation among finish rolling temperature (FRT),microstructure and mechanical property of the high grade pipeline steel was investigated in this study.The microstructure of the steels with different finish roll... The correlation among finish rolling temperature (FRT),microstructure and mechanical property of the high grade pipeline steel was investigated in this study.The microstructure of the steels with different finish rolling temperatures was observed with scanning electronic microscope (SEM) and transmission electronic microscope (TEM).The martensite/austenite (M/A) islands distribution was fixed by colour metallography,and the mechanical properties of the steels were tested with quasi-static tensile testing machine.The result shows that the fraction of M/A island increased with the finish rolling temperature decreasing,and when the finish rolling temperature is 800℃,the mechanical properties are the best. 展开更多
关键词 high grade pipeline steel finish rolling temperature martensite/austenite island
原文传递
Analysis of Temperature Field and Thermal Crown of Roll During Hot Rolling by Simplified FEM 被引量:14
5
作者 GUO Zhong-feng LI Chang-sheng XU Jian-zhong LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第6期27-30,48,共5页
Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) ... Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) was used to analyze the temperature field and thermal crown of roll, and corresponding models were built according to the practical boundary conditions. Transient roll temperature field and thermal crown were simulated by ANSYS FEM software with considering transient thermal contact and complex boundary condition. Temperature and thermal crown variations on roll surface nodes were obtained. The thermal crown results of roll obtained by FEM simulation were in good agreement with the measured data, indicating that simplified FEM models and results were correct. 展开更多
关键词 temperature field thermal crown FEM roll
下载PDF
Numerical simulation of roll temperature field and analysis of influence factor during the single-stand reversing cold rolling process
6
作者 DAI Jingge WANG Kangfian 《Baosteel Technical Research》 CAS 2017年第4期1-8,共8页
Accurate calculation results of roll temperature are the key factors in rolling cooling and lubricating technology during the single-stand reversing cold rolling process. By combining the high-strength steel rolling e... Accurate calculation results of roll temperature are the key factors in rolling cooling and lubricating technology during the single-stand reversing cold rolling process. By combining the high-strength steel rolling experiments ,the numerical simulation of roll temperature, and the influence factors in reversing cold rolling were studied. The research results correspond with those of rolling experiments and show that the research method could provide effective instruction for roll cooling and emulsion flow rate control during the on-site rolling process. 展开更多
关键词 cold rolled high-strength steel roll temperature field finite element modeling heat transfercoefficient
下载PDF
Controlled Rolling and Cooling Process for Low Carbon Cold Forging Steel 被引量:4
7
作者 李壮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期89-93,共5页
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th... Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling low temperature rolling the ferrite-grain refineme
下载PDF
Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature 被引量:4
8
作者 Hongchi Ma Baijie Zhao +4 位作者 Yi Fan Kui Xiao Jinbin Zhao Xuequn Cheng Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第4期565-578,共14页
The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling te... The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network. 展开更多
关键词 High-strength low-alloy(HSLA)steel Finish rolling temperature Non-recrystallization temperature Stress corrosion cracking(SCC) Grain boundary character Martensite-austenite(m/a)constituents
原文传递
Twinning Behavior of a Basal Textured Commercially Pure Titanium Alloy TA2 at Ambient and Cryogenic Temperatures 被引量:5
9
作者 Jin-ru LUO Xiao SONG +1 位作者 Lin-zhong ZHUANG Ji-shan ZHANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第1期74-77,共4页
Twinning greatly affects the microstructure and mechanical performance of titanium alloys.The twinning behavior of a basal textured commercially pure titanium TA2 plates rolled to 4% reduction at the ambient and cryog... Twinning greatly affects the microstructure and mechanical performance of titanium alloys.The twinning behavior of a basal textured commercially pure titanium TA2 plates rolled to 4% reduction at the ambient and cryogenic temperatures has been investigated.Microstructures of the rolled samples were investigated by optical microscope(OM)and the twinning analysis was carried out based on orientation data collected by electron back-scatter diffraction(EBSD).{1122}contraction twins,{1124}contraction twins and {1012}extension twins have been observed.Twinning mode activity varied with rolling temperature.Twinning is considered as the dominant deformation mechanism during rolling at both temperatures for the strain condition.Larger proportion of grains activates twinning during cryorolling,and greater number and more diverse types of twins are observed;manifestly related to the suppression of dislocation slips at the cryogenic temperature.{1122}contraction twins are the dominate twin type within samples rolled at both temperatures.Several{1124}contraction twins are observed in the cryorolled sample while there are only a few in the sample rolled at room temperature.A few tiny{1012}twins have been identified in both samples.{1124}contraction twins are preferentially activated at cryogenic deformation temperature and the{1012}extension twins may result in local strain accommodation. 展开更多
关键词 titanium rolling twinning cryogenic temperature
原文传递
Deformation Behavior of Fe-36Ni Steel during Cryogenic( 123-173 K) Rolling 被引量:4
10
作者 Jian-jun ZHENG Chang-sheng LI +2 位作者 Shuai HE Ban CAI Yan-lei SONG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第5期447-452,共6页
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ... Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process. 展开更多
关键词 Fe-36Ni steel cryogenic rolling twinning dislocation slip room temperature deformation microstructure
原文传递
Influence of Nb on Microstructure and Property of Low-Carbon Mn-Series Air-Cooled Bainitic Steel 被引量:5
11
作者 WANG Yong-wei FENG Chun XU Feng-yun BAI Bing-zhe FANG Hong-sheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2010年第1期49-53,共5页
The effect of Nb on the microstructure evolution of low-carbon Mn-series air cooled bainitic steels has been studied by using thermomeehanical simulation machine, SEM, and TEM observation. The results show that the am... The effect of Nb on the microstructure evolution of low-carbon Mn-series air cooled bainitic steels has been studied by using thermomeehanical simulation machine, SEM, and TEM observation. The results show that the amount of ferrites is relatively higher in the steel without Nb than that of Nb-bearing steel under same deformation conditions, and the ferrites in Nb-bearing steel are more finer. The mechanical properties of the Nb-bearing steel are higher than those of the steel without Nb at the same finishing rolling temperature (FRT), and the toughness of the Nb- bearing steel is about 100J higher than that of the steel without Nh at the finishing rolling temperature 750℃. The toughness of Nb microalloyed steel will be improved more effectively than that of the steel without Nb with the decrease of FRT. 展开更多
关键词 Mn-series bainitic steel grain boundary allotriomorphic ferrite finishing rolling temperature Nb microalloyed steel TOUGHNESS
原文传递
Effect of Thermomechanical Processing on Mechanical Properties of Hot Rolled Multiphase Steel 被引量:1
12
作者 LI Zhuang WU Di LU Hui-sheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第1期55-60,共6页
The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of fini... The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of finish rolling deformation degrees and temperatures were applied.The results indicate that polygonal ferrite,granular bainite,and a considerable amount of stabilized retained austenite can be obtained by TMP.The stability of the retained austenite increases with decreasing finish rolling temperature and increasing finish rolling deformation degrees.Ultimate tensile strength(σb),total elongation(δ),and the product of ultimate tensile strength by total elongation(σb·δ)for 50% reduction at finish rolling temperature of 700 ℃ reach maximum values [791 MPa,36% and 28 476(MPa·%),respectively]. 展开更多
关键词 hot rolled multiphase steel finish rolling deformation degree finish rolling temperature retained austenite mechanical property
原文传递
Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel 被引量:1
13
作者 Zhenye Chen Zhangguo Lin +3 位作者 Jianjun Qi Yang Feng Liqing Chen Guodong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第7期1131-1142,共12页
This article reports a new generation of Q460 multi-functional construction structural steel,which has high strength(yield strength larger than 460 MPa),excellent toughness(higher than 110 J/cm^(2) at-60 ℃),lower yie... This article reports a new generation of Q460 multi-functional construction structural steel,which has high strength(yield strength larger than 460 MPa),excellent toughness(higher than 110 J/cm^(2) at-60 ℃),lower yield ratio(lower than 0.8),good fire resistance(yield strength at 600 ℃ larger than two-thirds of its room-temperature yield strength)and better corrosion resistance.The eff ects of finish cooling temperature(FCT)on the microstructure and properties were studied by scanning electron microscopy(SEM),transmission electron microscopy(TEM),emission electron probe micro-analysis(EPMA),electron backscattering diff raction(EBSD),tensile tester,impact tester,periodic immersion cycle acceleration test and electrochemical experiment.The results show that the strength and toughness are simultaneously improved by decreasing the FCT due to more lath-like bainite with large number of dislocations,refined martensite/austenite(M/A)with higher carbon concentration and increased high angle boundaries.In addition,the fire resistance of the newly developed Q460 steel is obviously better than the conventional one,which is mainly due to non-recrystallized lath-like bainite with high dislocation density at elevated temperature.The corrosion resistance of the new Q460 steel is also improved due to the addition of Cu and Cr. 展开更多
关键词 Construction structural steel Thermo-mechanical controlled processing(TMCP) Finish rolling temperature Microstructure Mechanical properties
原文传递
Effects of Technological Parameters on Microstructures and Properties of Low Cost Hot Rolled Dual-Phase Steel on CSP Line 被引量:1
14
作者 DONG Rui-feng 1,2,LI De-gang 1,2,YAN Bo 2,WANG Guo-dong 1 (1.The State Key Lab of Rolling and Automation,Northeastern University,Shenyang 110004,China 2.Baotou Iron and Steel (Group) Co Ltd,Compact Strip Production Plant,Baotou 014010,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期615-620,共6页
The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar c... The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar cooling and UFC (ultra fast cooling) and stable UFC rate on the same gauge strips with the same chemistry composition during the manufacture process.It is the key for controlling coil temperature to control finish rolling temperature and mid cooling temperature between laminar cooling and UFC that based on stable UFC rate precondition.The lower finish rolling temperature,with mid cooling temperature between laminar cooling and UFC,the better to form martensite is.The foundation of developing the similar productions on the similar product line was supplied.It is good to technological advancement of developing high affixation value production as hot rolled DP steel,TRIP steel etc.in CSP line. 展开更多
关键词 finish rolling temperature mid cooling temperature between laminar cooling and UFC hot rolled dual-phase steel microstructures and properties
原文传递
Effect of Thermomechanical Controlled Processing on Mechanical Properties of 490 MPa Grade Low Carbon Cold Heading Steel 被引量:1
15
作者 LI Zhuang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2009年第3期43-48,共6页
Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechan... Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechanical properties of the steel was investigated. The results showed that the mechanical properties of the low carbon cold heading steel could be significantly improved by TMCP without heat treatment. The improvement of mechanical properties can be attributed mainly to the ferrite grain refinement due to low temperature rolling. In the experiments the better ultimate tensile strength and ductility are obtained by lowering finishing cooling temperature within the temperature range from 650 ℃ to 550 ℃ since the interlamellar space in pearlite colonies become smaller. Good mechanical properties can be obtained in a proper austenite condition and thermomechanical processing parameter. The ferrite morphology has a more pronounced effect on the mechanical behavior than refinement of the microstructure. It is possible to realize the replacement of medium-carbon by low-carbon for 490 MPa grade cold heading steel with TMCP. 展开更多
关键词 thermomechanical controlled processing TMCP low carbon cold heading steel low temperature rolling finishing cooling temperature
原文传递
Thermal Crown Model and Shifting Effect Analysis of Work Roll in Hot Strip Mills 被引量:2
16
作者 Shui-xuan CHEN Wei-gang LI Xiang-hua LIU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第9期777-784,共8页
Considering the effect of work roll shifting on roll temperature field,a finite difference method of PR format for roll temperature field was presented,which can meet the requirements of accuracy and speed of online c... Considering the effect of work roll shifting on roll temperature field,a finite difference method of PR format for roll temperature field was presented,which can meet the requirements of accuracy and speed of online calculation.The step-by-step accumulation method was used to simulate the roll temperature field and thermal crown,and the evolution of roll thermal crown in a rolling campaign was studied.And then,the effects of strip width,rolling rhythm and work roll shifting on roll thermal crown were analyzed.It is found that work roll shifting can disperse the thermal expansion of the roll body especially the edge to make roll thermal contour uniform.The effect of work roll shifting on roll thermal crown is mainly concentrated in regions around twice of roll shifting stroke,and the change range of roll thermal crown is±30μm or so in the same roll body location. 展开更多
关键词 hot strip mill work roll temperature field thermal crown work roll shifting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部