期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method 被引量:9
1
作者 ZHANG Dawei LI Yongtang +1 位作者 FU Jianhua ZHENG Quangang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期688-695,共8页
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o... Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling. 展开更多
关键词 external spline cold rolling slip-line field method rolling force rolling moment
下载PDF
Study on the Influence of a Wake Vortex on an ARJ21 Aircraft Using the Strip Method
2
作者 Weijun Pan Jingkai Wang +1 位作者 Hao Wang Yuming Luo 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1495-1509,共15页
A model for the vortex distribution in the wake of an aircraft is elaborated to investigate the wake influence on the behaviour of other aircrafts potentially interacting with it.As a realistic case,the interaction of... A model for the vortex distribution in the wake of an aircraft is elaborated to investigate the wake influence on the behaviour of other aircrafts potentially interacting with it.As a realistic case,the interaction of an ARJ21 aircraft with a(leading)A330-200 aircraft is considered.Different distances are considered,namely,6 km,7 km,8 km,9.3 km,and 10 km.Simulations based on the used wake dissipation mechanism are used to investigate different conditions,namely,the ARJ21 in take-off and level flight and the changes induced in the related lift by the front aircraft A330-200 during landing.The induced roll moment is also studied and analyzed by means of a strip method.As a result,the roll moment coefficient is determined to quantify the roll degree of the aircraft when it is influenced by the wake vortex.The results show the overall roll moment coefficient of the considered ARJ21 aircraft is less than 0.05,and the wing roll moment coefficient is less than 0.04.Such results are interpreted and discussed according to existing standards. 展开更多
关键词 Wake vortex dissipation safety interval induction velocity roll torque rolling moment coefficient
下载PDF
Design and Experimental Verification of a Roll Control Strategy for Large Wingspan Flapping-Wing Aerial Vehicle
3
作者 Rui Meng Bifeng Song +2 位作者 Jianlin Xuan Xiaojun Yang Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1644-1661,共18页
Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain li... Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input. 展开更多
关键词 Roll control BIO-INSPIRED Roll moment Flapping wing aerial vehicle
原文传递
The effects of vortex breakdown on the static rolling aerodynamics of finned slender body
4
作者 XU KeZhe ZHANG YuFei +1 位作者 CHEN HaiXin FU Song 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第11期2174-2176,共3页
The static rolling aerodynamics of a finned slender body is numerically studied in this paper.Simulation results show a nonlinear uprising of the rolling moment when the angle of attack is greater than 20°in subs... The static rolling aerodynamics of a finned slender body is numerically studied in this paper.Simulation results show a nonlinear uprising of the rolling moment when the angle of attack is greater than 20°in subsonic flows.Asymmetric vortex break down phenomenon on the"horizontal"rudders is found to be responsible for this phenomenon.By introducing the geometric-equivalent angle of attack and geometric-equivalent sweep angle,the cause of the nonlinear rolling moment characteristics can be explained by the delta wing vortex breakdown analysis. 展开更多
关键词 vortex breakdown rolling moment delta wing slender body
原文传递
Optimization of rollover stability for a three-wheeler vehicle
5
作者 S. A. Sree Ram P. Raja K. Sreedaran 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第3期279-288,共10页
An auto rickshaw is a three-wheeled motor vehicle commonly found in Asia, with one front steering wheel and two driven wheels at the back. In automobiles, suspension is used to keep the wheels planted during motion. T... An auto rickshaw is a three-wheeled motor vehicle commonly found in Asia, with one front steering wheel and two driven wheels at the back. In automobiles, suspension is used to keep the wheels planted during motion. The trailing arm suspension generally found in Indian automobiles has its roll center on the ground. The vehicle's center of gravity is above the ground, which creates a moment during vehicle turning known as the roll moment. When this roll moment exceeds a certain limit, the vehicle becomes unstable. Roll rate can be expressed as degrees per lateral acceleration of the vehicle's sprung mass, and is influenced by factors such as wheel rate, motion ratio, and suspension rate. In order to determine an optimized three-wheeler suspension setup, a matrix selection method was used, in which every available suspension type in the market is rated based on selected suspension parameters such as handling, dynamics, and simplicity. From the overall weightage, each suspension type is analyzed and the most appropriate is selected. In order to achieve the objective of improving the overall rollover stability, certain modifications have been applied in the selected suspension design. Generally, if the roll rate of a specific vehicle axle is high, the percentage of weight transfer on the axle will also be high. By improving roll stiffness, the amount of roll can be decreased, and by optimizing the motion ratio, the roll moment can be controlled, thereby increasing the overall rollover stability. 展开更多
关键词 Roll rate Roll moment Rollover stability ·Trailing arm setup
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部