The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Mode...The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.展开更多
GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeter...GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource ex...Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.展开更多
The column wicking technique was applied to estimate the surface free energy of cellulose, the importance of which is to obtain a real effective capillary radius, Reff, initially from the plot of Washburn penetration ...The column wicking technique was applied to estimate the surface free energy of cellulose, the importance of which is to obtain a real effective capillary radius, Reff, initially from the plot of Washburn penetration distance versus time. Since the cellulose sample could not be packed with good reproducibility, therefore, Reff can not be obtained readily from the slope of the plot. A method was developed in this paper by uniting all apparent packing heights with a unique value to deduce a real effective capillary radius. Based on the defined critical packing height related to the critical packing density, the surface free energy and acid-base properties of cellulose Sigma C8002 were estimated.展开更多
By using NCEP GODAS monthly sea surface height(SSH) and 160-station monthly precipitation data in China,the seasonal and interannual characteristics of SSH are analyzed over the tropical Pacific,and correlations betwe...By using NCEP GODAS monthly sea surface height(SSH) and 160-station monthly precipitation data in China,the seasonal and interannual characteristics of SSH are analyzed over the tropical Pacific,and correlations between SSH and summer rainfall are discussed.The results are shown as follows:(1) The tropical Pacific SSH takes on a "V" pattern in the climatic field with an eastward opening,and it is higher in the western part(in the northwestern part) than in the eastern part(in the southwestern part).The high-value areas are more stable in the northwest,and the value range(greater than 0.8 m) is larger in spring and summer than in autumn and winter.The high-value area in the southwestern part is the largest(smallest) and more northerly(southerly) in spring(summer).SSH is higher in spring and autumn than in summer and winter over the equatorial zone.(2) The interannual anomalies of the SSH are the strongest over the tropical western and southwestern Pacific and are stronger in winter and spring than in summer and autumn.The interannual anomalies are also strong over the equatorial middle and eastern Pacific.The distribution ranges are larger and the intensities are stronger in the autumn and winter.There is a close relationship between the SSH interannual anomalies and ENSO events in autumn,winter and spring.(3) When ENSO events take place in winter,according to the simultaneous relationship among the tropic Pacific SSH,850 hPa wind fields and the summer precipitation of China,it can be predicted that the precipitation will be significantly more than normal over the south of the Yangtze River,especially over Dongting Lake and Poyang Lake region,eastern Qinghai-Tibet Plateau,Yangtze-Huai River Valley,eastern part of Inner Mongolia and less than normal over the area of Great Band of Yellow River,North China and South China in successive summers.展开更多
The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tida...The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer.展开更多
The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array ...The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.展开更多
AIM:To invastigate intra-and interobserver reliability of interferometry,tear meniscus height(TMH)measurement and meibography(MBG)of an ocular surface analyzer,LacryDiag(Quantel Medical,France).METHODS:Five consecutiv...AIM:To invastigate intra-and interobserver reliability of interferometry,tear meniscus height(TMH)measurement and meibography(MBG)of an ocular surface analyzer,LacryDiag(Quantel Medical,France).METHODS:Five consecutive measurements and subsequent analysis of interferometry,TMH,and MBG were recorded by two examiners using the LacryDiag.To assess intra-and interobserver reliability,we used Cohen’s kappa for categorical variables(interferometry),or intraclass correlation coefficient for continuous variables(TMH,MBG).RESULTS:Thirty eyes of 30 examinees were included.For both observers,there was excellent intraobserver reliability for MBG(0.955 and 0.970 for observer 1 and 2,respectively).Intraobserver reliability for observer 1 was substantial for interferometry(0.799),and excellent for TMH(0.863).Reliability for observer 2 was moderate for interferometry(0.535)and fair to good for TMH(0.431).Interobserver reliability was poor for interferometry(0.074)and fair to good for TMH(0.680)and MBG(0.414).CONCLUSION:LacryDiag ocular surface analyzer in our study proves to be a reliable noninvasive tool for the evaluation of TMH and MBG.As for interferometry,poor interobserver reliability,fair to good intraobserver reliability for observer 1,and moderate for observer 2,leave room for improvement.展开更多
Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable ...Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .展开更多
Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave...Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.展开更多
Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are em...Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.展开更多
A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal featu...A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future.展开更多
The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pa...The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pacific basin scale oscillations are examined. The first CSEOF mode of the SCS-SSH is a strongly phase-locked annual cycle that is modulated by a slowly varying principal component(PC); the strength of this annual cycle becomes reduced during El Ni?o events(at largest by 30% off in 1997/98) and enhanced during La Ni?a events. The second mode is a low frequency oscillation nearly on decadal time scale, with its spatial structure exhibiting an obscure month-dependence; the corresponding PC is highly correlated with the Pacific Decadal Oscillation(PDO) index.Five independent oscillations in the Pacific are isolated by using the independent component(IC) analysis(ICA)method, and their effects on the SCS-SSH are examined. It is revealed that the pure ENSO mode(which resembles the east Pacific ENSO) has little effect on the low frequency variability of the SCS-SSH while the ENSO reddening mode(which resembles the central Pacific ENSO) has clear effect. As the ENSO reddening mode is an important constituent of the PDO, this explains why the PDO is more important than ENSO in modulating the low frequency variability of SCS-SSH. Meridional saddle like oscillation mode, the Kuroshio extension warming mode, and the equatorial cooling mode are also successfully detected by the ICA, but they have little effect on the low frequency variability of the SCS-SSH. Further analyses suggest the Pacific oscillations are probably influencing the variability of the SCS-SSH in ways that are different from that of the sea surface temperature(SST) in the SCS.展开更多
The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation ...The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation outputs. Results show that correlation between altimetric SSH and heat content in the upper 700 m calculated from Ishii data is geographically nonuniform. In the tropical ocean, heat content and SSH are strongly correlated and exhibit nearly the same interannual variations. In the polar ocean, their correlation is relatively weak. Further analysis with Simple Ocean Data Assimilation outputs shows that such nonuniform distribution is not from dynamical origin but from the limited integral depth selected to calculate heat content. The integral depth of 700 m is inadequate to capture variation of the deep main thermocline in the polar region. The halosteric effect also contributes to the nonuniform pattern of correlation, because saline contraction becomes significant in the polar ocean owing to low temperature.展开更多
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH...Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.展开更多
t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the ve...t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.展开更多
Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven R...Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing,and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations.Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible.It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropicaltomidlatitude and eastern subpolar North Atlantic.In these regions,the new Rossby wave model accounts for 25%-70% of low-frequency steric SSH variations.Furthermore,as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%-75% of low-frequency steric SSH variations in the Labrador Sea,which is a region where Rossby waves are found to have no influence on the steric SSH.展开更多
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
基金the NSFC (No. 49636230) National Key Program for Developing Basic Science (G 1999043807) of Ministry of Science Technology
文摘The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.
基金Supported by the National Key R&D Program of China(No.2016YFC1401003)the National Natural Science Foundation of China(Nos.41406204,41501417)the Marine Public Welfare Project of China(No.201305032-3)
文摘GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金The National Basic Research Program of China under contract Nos 2015CB453200,2013CB956200,2012CB957803 and2010CB950400the National Natural Science Foundation of China under contract Nos 41275086 and 41475070
文摘Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.
基金This work is financially supported by the Chinese Education Ministry and Donghua University of China (No. 2B01).
文摘The column wicking technique was applied to estimate the surface free energy of cellulose, the importance of which is to obtain a real effective capillary radius, Reff, initially from the plot of Washburn penetration distance versus time. Since the cellulose sample could not be packed with good reproducibility, therefore, Reff can not be obtained readily from the slope of the plot. A method was developed in this paper by uniting all apparent packing heights with a unique value to deduce a real effective capillary radius. Based on the defined critical packing height related to the critical packing density, the surface free energy and acid-base properties of cellulose Sigma C8002 were estimated.
基金Specific Project on Public Fields (GYHY201006038,GYHY201006020)"973" Program(2013CB430202,2012CB417205)+1 种基金Third-level Talent Training Project of the fourth "333 project" in Jiangsu Provincea project by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘By using NCEP GODAS monthly sea surface height(SSH) and 160-station monthly precipitation data in China,the seasonal and interannual characteristics of SSH are analyzed over the tropical Pacific,and correlations between SSH and summer rainfall are discussed.The results are shown as follows:(1) The tropical Pacific SSH takes on a "V" pattern in the climatic field with an eastward opening,and it is higher in the western part(in the northwestern part) than in the eastern part(in the southwestern part).The high-value areas are more stable in the northwest,and the value range(greater than 0.8 m) is larger in spring and summer than in autumn and winter.The high-value area in the southwestern part is the largest(smallest) and more northerly(southerly) in spring(summer).SSH is higher in spring and autumn than in summer and winter over the equatorial zone.(2) The interannual anomalies of the SSH are the strongest over the tropical western and southwestern Pacific and are stronger in winter and spring than in summer and autumn.The interannual anomalies are also strong over the equatorial middle and eastern Pacific.The distribution ranges are larger and the intensities are stronger in the autumn and winter.There is a close relationship between the SSH interannual anomalies and ENSO events in autumn,winter and spring.(3) When ENSO events take place in winter,according to the simultaneous relationship among the tropic Pacific SSH,850 hPa wind fields and the summer precipitation of China,it can be predicted that the precipitation will be significantly more than normal over the south of the Yangtze River,especially over Dongting Lake and Poyang Lake region,eastern Qinghai-Tibet Plateau,Yangtze-Huai River Valley,eastern part of Inner Mongolia and less than normal over the area of Great Band of Yellow River,North China and South China in successive summers.
基金This study was supported by the National Natural Science Foundation of China under contract No.40006001 the Young Oceanologist Foundation of the State Oceanic Administration under contract No.99306.
文摘The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer.
文摘The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.
文摘AIM:To invastigate intra-and interobserver reliability of interferometry,tear meniscus height(TMH)measurement and meibography(MBG)of an ocular surface analyzer,LacryDiag(Quantel Medical,France).METHODS:Five consecutive measurements and subsequent analysis of interferometry,TMH,and MBG were recorded by two examiners using the LacryDiag.To assess intra-and interobserver reliability,we used Cohen’s kappa for categorical variables(interferometry),or intraclass correlation coefficient for continuous variables(TMH,MBG).RESULTS:Thirty eyes of 30 examinees were included.For both observers,there was excellent intraobserver reliability for MBG(0.955 and 0.970 for observer 1 and 2,respectively).Intraobserver reliability for observer 1 was substantial for interferometry(0.799),and excellent for TMH(0.863).Reliability for observer 2 was moderate for interferometry(0.535)and fair to good for TMH(0.431).Interobserver reliability was poor for interferometry(0.074)and fair to good for TMH(0.680)and MBG(0.414).CONCLUSION:LacryDiag ocular surface analyzer in our study proves to be a reliable noninvasive tool for the evaluation of TMH and MBG.As for interferometry,poor interobserver reliability,fair to good intraobserver reliability for observer 1,and moderate for observer 2,leave room for improvement.
基金Supported by the National Natural Science Foundation of China (No.40890151)the National Basic Research Program of China (973 Program)(No.2012CB417401)
文摘Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .
基金The Key R&D Program of Shandong Province under contract No.2023CXPT101.
文摘Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.
基金The National Key Research and Development Program of China under contract No.2016YFC1401800the National Natural Science Foundation of China under contract Nos 41576176 and 11401140the Key Project of Science and Technology of Harbin Institute of Technology at Weihai of China under contract No.2014 DXGJ14
文摘Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.
基金The National Key Research and Development Program under contract Nos 2018YFC1406204 and 2018YFC1406201the Guangdong Special Support Program under contract No.2019BT2H594+5 种基金the Taishan Scholar Foundation under contract No.tsqn201812029the National Natural Science Foundation of China under contract Nos U1811464,61572522,61572523,61672033,61672248,61873280,41676016 and 41776028the Natural Science Foundation of Shandong Province under contract Nos ZR2019MF012 and 2019GGX101067the Fundamental Research Funds of Central Universities under contract Nos 18CX02152A and 19CX05003A-6the fund of the Shandong Province Innovation Researching Group under contract No.2019KJN014the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0303.
文摘A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future.
基金The National Natural Science Foundation of China under contract Nos 91128204,41321004,41475101 and 41421005the National Basic Research Program(973 Program)of China under contract No.2013CB430302+1 种基金the Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401the Strategic Priority Project of Chinese Academy of Sciences under contract Nos XDA11010301 and XDA11010104
文摘The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pacific basin scale oscillations are examined. The first CSEOF mode of the SCS-SSH is a strongly phase-locked annual cycle that is modulated by a slowly varying principal component(PC); the strength of this annual cycle becomes reduced during El Ni?o events(at largest by 30% off in 1997/98) and enhanced during La Ni?a events. The second mode is a low frequency oscillation nearly on decadal time scale, with its spatial structure exhibiting an obscure month-dependence; the corresponding PC is highly correlated with the Pacific Decadal Oscillation(PDO) index.Five independent oscillations in the Pacific are isolated by using the independent component(IC) analysis(ICA)method, and their effects on the SCS-SSH are examined. It is revealed that the pure ENSO mode(which resembles the east Pacific ENSO) has little effect on the low frequency variability of the SCS-SSH while the ENSO reddening mode(which resembles the central Pacific ENSO) has clear effect. As the ENSO reddening mode is an important constituent of the PDO, this explains why the PDO is more important than ENSO in modulating the low frequency variability of SCS-SSH. Meridional saddle like oscillation mode, the Kuroshio extension warming mode, and the equatorial cooling mode are also successfully detected by the ICA, but they have little effect on the low frequency variability of the SCS-SSH. Further analyses suggest the Pacific oscillations are probably influencing the variability of the SCS-SSH in ways that are different from that of the sea surface temperature(SST) in the SCS.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the National Natural Science Foundation of China (Nos. 41006114, 40890151)+1 种基金the National Basic Research Program of China (973 Program) (No. 2012CB417401)the SOA Key Laboratory for Polar Science (No. KP201103)
文摘The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation outputs. Results show that correlation between altimetric SSH and heat content in the upper 700 m calculated from Ishii data is geographically nonuniform. In the tropical ocean, heat content and SSH are strongly correlated and exhibit nearly the same interannual variations. In the polar ocean, their correlation is relatively weak. Further analysis with Simple Ocean Data Assimilation outputs shows that such nonuniform distribution is not from dynamical origin but from the limited integral depth selected to calculate heat content. The integral depth of 700 m is inadequate to capture variation of the deep main thermocline in the polar region. The halosteric effect also contributes to the nonuniform pattern of correlation, because saline contraction becomes significant in the polar ocean owing to low temperature.
文摘Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.
基金Supported by the National Natural Science Foundation of China (No. 40637034), the National High Technology Research and Development Program of China(No. 2006AA12Z309, 2006AAO9Z138, 2007AA12Z346).
文摘t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.
文摘Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing,and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations.Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible.It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropicaltomidlatitude and eastern subpolar North Atlantic.In these regions,the new Rossby wave model accounts for 25%-70% of low-frequency steric SSH variations.Furthermore,as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%-75% of low-frequency steric SSH variations in the Labrador Sea,which is a region where Rossby waves are found to have no influence on the steric SSH.