Onions are a horticultural crop of great economic, dietary and medicinal importance, and are highly prized by the Ivorian population. However, production remains low, due to a number of constraints, including parasiti...Onions are a horticultural crop of great economic, dietary and medicinal importance, and are highly prized by the Ivorian population. However, production remains low, due to a number of constraints, including parasitic attacks. The most frequent is fusariosis caused by Fusarium sp., a pathogen that causes enormous damage to onion crops. Faced with these attacks, chemical control appears to be ineffective, with consequences for human health and the environment. This is why the search for effective alternative methods that respect the environment and human health is so necessary. It is in this context that this study was carried out, with the general aim of controlling fusarium wilt in onion crops, with a view to improving onion production in Ivory Coast through the use of effective microorganisms. The experimental set-up used for this purpose was a fisher block with complete randomization, comprising three replicates. A fungal spore concentration of 106 spore/mL of Fusarium sp., three doses (1%;2.5% and 5% v/v) of EM and one dose of a chemical fungicide (30 mL/16L) were tested on young onion plants. Each block consisted of nine sub-plots with nine treatments. Health parameters (incidence and severity) and agronomic parameters (growth and yield) were assessed. Microbiological analysis of the EM revealed the presence of nine morphotypes of Trichoderma sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus sp., Penicillium sp., Rhizopus sp., lactic acid bacteria of the Bacillus family and the yeast Saccharomyces cerevisiae. Field experimentation showed that the 5% EM microbial solution reduced the incidence and severity of fusariosis compared with the chemical fungicide, and proved to be the best. This dose reduced yield losses by 7.14%, while improving onion growth and yield by over 5%. The results demonstrated the ability of the EM solution to effectively control the causal agent of basal rot in onion crops.展开更多
[ Objective ] The paper was to investigate the occurrence condition of pear blight rot in pear-producing areas in Qianxian of Shannxi Province, so as to find the main cause of the disease and the effective agents for ...[ Objective ] The paper was to investigate the occurrence condition of pear blight rot in pear-producing areas in Qianxian of Shannxi Province, so as to find the main cause of the disease and the effective agents for the disease. [Method] The occurrence condition of pear blight rot was surveyed in field, the inci- dence rate of trees and incidence index of fruits were counted, and the field control test of different agents against pear blight rot was carried out. [ Result] The ma- jor reasons for outbreak of pear blight rot in Ganhe pear-producing areas in Qianxian of Shannxi Province were excessive rainfall and high temperature and humidity in July 2010, poor drainage in orchards and large planting density were also the main factors causing outbreak of pear blight rot. 64% oxadixyl · mancozeb WP, 60% metalaxyl-mancozeb WP and 80% aliette WP had significant control effect on pear blight rot, fruit bagging was also an ideal measure for prevention of the dis- ease. [ Conclusion] Pear production should focus on improving the air and light condition, enhancing the drainage capacity of orchard and promoting bagging culti- vation, and the systemic control agents should be selected to control pear blight rot.展开更多
[Objective] Actinomycetes with high antagonistic effects on alfalfa root rot pathogen was isolated from 10 soil samples in Chifeng Inner Mongolia. [Method] 91 actinomyces were separated from 10 soil samples in Chifeng...[Objective] Actinomycetes with high antagonistic effects on alfalfa root rot pathogen was isolated from 10 soil samples in Chifeng Inner Mongolia. [Method] 91 actinomyces were separated from 10 soil samples in Chifeng Inner Mongolia by gradient dilution separation method. In duel culture tests, all isolates were tested for their antagonism by using 3 strains including Fusarium solani, F. oxysoporum, F. avenaceum of alfalfa root rot pathogenic bacteria as indicator strains. [Result] 5 strains with strong antagonistic effect on tested alfalfa root rot pathogen were obtained from No.1, No.4, No.6 and No.7 soil samples which were numbered 1-3-6, 4-4-2, 6-2-27 and 7-2-13 respectively, accounted for 5.50% in separated strains. [Conclusion] This study laid certain foundation for biological control of alfalfa root rot disease.展开更多
文摘Onions are a horticultural crop of great economic, dietary and medicinal importance, and are highly prized by the Ivorian population. However, production remains low, due to a number of constraints, including parasitic attacks. The most frequent is fusariosis caused by Fusarium sp., a pathogen that causes enormous damage to onion crops. Faced with these attacks, chemical control appears to be ineffective, with consequences for human health and the environment. This is why the search for effective alternative methods that respect the environment and human health is so necessary. It is in this context that this study was carried out, with the general aim of controlling fusarium wilt in onion crops, with a view to improving onion production in Ivory Coast through the use of effective microorganisms. The experimental set-up used for this purpose was a fisher block with complete randomization, comprising three replicates. A fungal spore concentration of 106 spore/mL of Fusarium sp., three doses (1%;2.5% and 5% v/v) of EM and one dose of a chemical fungicide (30 mL/16L) were tested on young onion plants. Each block consisted of nine sub-plots with nine treatments. Health parameters (incidence and severity) and agronomic parameters (growth and yield) were assessed. Microbiological analysis of the EM revealed the presence of nine morphotypes of Trichoderma sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus sp., Penicillium sp., Rhizopus sp., lactic acid bacteria of the Bacillus family and the yeast Saccharomyces cerevisiae. Field experimentation showed that the 5% EM microbial solution reduced the incidence and severity of fusariosis compared with the chemical fungicide, and proved to be the best. This dose reduced yield losses by 7.14%, while improving onion growth and yield by over 5%. The results demonstrated the ability of the EM solution to effectively control the causal agent of basal rot in onion crops.
基金Supported by Special Funding for Construction of Modern Agricultural Industrial Technology System~~
文摘[ Objective ] The paper was to investigate the occurrence condition of pear blight rot in pear-producing areas in Qianxian of Shannxi Province, so as to find the main cause of the disease and the effective agents for the disease. [Method] The occurrence condition of pear blight rot was surveyed in field, the inci- dence rate of trees and incidence index of fruits were counted, and the field control test of different agents against pear blight rot was carried out. [ Result] The ma- jor reasons for outbreak of pear blight rot in Ganhe pear-producing areas in Qianxian of Shannxi Province were excessive rainfall and high temperature and humidity in July 2010, poor drainage in orchards and large planting density were also the main factors causing outbreak of pear blight rot. 64% oxadixyl · mancozeb WP, 60% metalaxyl-mancozeb WP and 80% aliette WP had significant control effect on pear blight rot, fruit bagging was also an ideal measure for prevention of the dis- ease. [ Conclusion] Pear production should focus on improving the air and light condition, enhancing the drainage capacity of orchard and promoting bagging culti- vation, and the systemic control agents should be selected to control pear blight rot.
基金Supported by Central Nonprofit Research Institutions Basic Scientific Research Operating Expenses(Grassland Research Institute,Chinese Academy of Agricultural Sciences2006-01-05)~~
文摘[Objective] Actinomycetes with high antagonistic effects on alfalfa root rot pathogen was isolated from 10 soil samples in Chifeng Inner Mongolia. [Method] 91 actinomyces were separated from 10 soil samples in Chifeng Inner Mongolia by gradient dilution separation method. In duel culture tests, all isolates were tested for their antagonism by using 3 strains including Fusarium solani, F. oxysoporum, F. avenaceum of alfalfa root rot pathogenic bacteria as indicator strains. [Result] 5 strains with strong antagonistic effect on tested alfalfa root rot pathogen were obtained from No.1, No.4, No.6 and No.7 soil samples which were numbered 1-3-6, 4-4-2, 6-2-27 and 7-2-13 respectively, accounted for 5.50% in separated strains. [Conclusion] This study laid certain foundation for biological control of alfalfa root rot disease.