A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and ...A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and the theoretical expressions of the optical field distributions corresponding to different sample rotations. By rotating the samples and changing the laser wavelength, various special micro-optical structures can be obtained, such as equally spaced concentric rings and irregular trapezoidal lattices; these structures are demonstrated by simulating the corresponding optical field distributions. The proposed approach may be developed into a low-cost laser interference lithography technology for the fabrication of various micro-optical structures.展开更多
A two-color continuous wave(CW) discharge-pumped far-infrared(FIR) hydrogen cyanide(HCN) laser was developed as the source of an interferometer for measuring the line-averaged electron density in the Experimenta...A two-color continuous wave(CW) discharge-pumped far-infrared(FIR) hydrogen cyanide(HCN) laser was developed as the source of an interferometer for measuring the line-averaged electron density in the Experimental Advanced Superconducting Tokamak(EAST). The output power of the dual laser system was about 120 m W from each laser on the 337 μm(0.89 THz)line. The polarization of each output beam was fixed using thin tungsten filaments and oscillated in the EH11 mode. Different megahertz intermediate frequencies(IF) and a slight frequency offset(~1 MHz) were generated in this system to replace the traditional rotating grating with~10 k Hz IF, and this can improve the time resolution of the interferometer significantly. The experimental result showed that different IF signals were obtained by successfully adjusting the cavity length. In particular, the beat frequency was captured at ~1.3 MHz by a Schottky mixer when the length of the resonant cavities was changed by 5 μm by an automatic adjustment system. In order to study the character of IF, a long time record of the IF signal was carried out,and the IF signal could be stabilized for a few minutes in the range of 2 MHz to 3 MHz. A realtime IF stability control system was initially designed for long pulse discharge experiments on the EAST. The ~MHz frequency response and good phase sensitivity of the dual laser HCN interferometer will allow the system to track fast density profiles and resolve fast MHD events,such as tearing/neoclassical tearing, disruptions, etc.展开更多
We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotat...We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotational information. A mathematical model is built for processing the data obtained by an interrogator, and the accuracy and resolution of the measurements are analyzed by altering the radius and period of the circular magnetic railings ruler, as well as the dimension of the sensor. The experimental results show that it is in good accordance with the theoretical analysis on rotational angle, and the fitting results indicate that the results obtained from the rotational sensor match very well with the real rotational velocity with a linearity of 0.998 and a standard error of about 0.01.展开更多
Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpo...Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpolarization fiber lasers is presented here, which shows that the pump induced birefringence is a result of the interplay among pump induced refractive index change, laser dynamics, and anisotropy inside fiber lasers.For erbium-doped fiber lasers, pumping at 1480 nm is better than pumping at 980 nm in lower pump induced birefringence. Moreover, injection at 532 nm for an adequately long enough time can permanently reduce anisotropy and, hence, reduce pump induced birefringence.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Basic Research Program of China(Grant No.2013CBA01703)+1 种基金the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology,China(Grant No.Q201509)the National Undergraduate Innovation Training Program of China(Grant No.201610731030)
文摘A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and the theoretical expressions of the optical field distributions corresponding to different sample rotations. By rotating the samples and changing the laser wavelength, various special micro-optical structures can be obtained, such as equally spaced concentric rings and irregular trapezoidal lattices; these structures are demonstrated by simulating the corresponding optical field distributions. The proposed approach may be developed into a low-cost laser interference lithography technology for the fabrication of various micro-optical structures.
基金funded by the International Thermonuclear Experimental Reactor(ITER)project plan(Nos.2012GB101002 and 2014GB106002)National Natural Science Foundation of China(Contract Nos.11105184,11375237 and 51605330)+1 种基金supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu Universitypartially supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics(NSFC No.11261140328)
文摘A two-color continuous wave(CW) discharge-pumped far-infrared(FIR) hydrogen cyanide(HCN) laser was developed as the source of an interferometer for measuring the line-averaged electron density in the Experimental Advanced Superconducting Tokamak(EAST). The output power of the dual laser system was about 120 m W from each laser on the 337 μm(0.89 THz)line. The polarization of each output beam was fixed using thin tungsten filaments and oscillated in the EH11 mode. Different megahertz intermediate frequencies(IF) and a slight frequency offset(~1 MHz) were generated in this system to replace the traditional rotating grating with~10 k Hz IF, and this can improve the time resolution of the interferometer significantly. The experimental result showed that different IF signals were obtained by successfully adjusting the cavity length. In particular, the beat frequency was captured at ~1.3 MHz by a Schottky mixer when the length of the resonant cavities was changed by 5 μm by an automatic adjustment system. In order to study the character of IF, a long time record of the IF signal was carried out,and the IF signal could be stabilized for a few minutes in the range of 2 MHz to 3 MHz. A realtime IF stability control system was initially designed for long pulse discharge experiments on the EAST. The ~MHz frequency response and good phase sensitivity of the dual laser HCN interferometer will allow the system to track fast density profiles and resolve fast MHD events,such as tearing/neoclassical tearing, disruptions, etc.
基金supported by the Program for Cheung Kong Scholars and Innovative Research Team in University(No.IRT1212)the Project Plan of Beijing Municipal Science and Technology Commission(No.Z151100003615010)the Project Plan of Beijing Municipal Education Commission for Enhancing the Innovation Capability in 2015(No.TJSHG201510772016)
文摘We propose a novel non-contact rotational sensor based on a fiber Bragg grating(FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotational information. A mathematical model is built for processing the data obtained by an interrogator, and the accuracy and resolution of the measurements are analyzed by altering the radius and period of the circular magnetic railings ruler, as well as the dimension of the sensor. The experimental results show that it is in good accordance with the theoretical analysis on rotational angle, and the fitting results indicate that the results obtained from the rotational sensor match very well with the real rotational velocity with a linearity of 0.998 and a standard error of about 0.01.
基金supported by the National Natural Science Foundation of China(Nos.11474133,61235005,and 61675091)the Natural Science Foundation of Guangdong Province of China(No.2014A030310419)
文摘Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpolarization fiber lasers is presented here, which shows that the pump induced birefringence is a result of the interplay among pump induced refractive index change, laser dynamics, and anisotropy inside fiber lasers.For erbium-doped fiber lasers, pumping at 1480 nm is better than pumping at 980 nm in lower pump induced birefringence. Moreover, injection at 532 nm for an adequately long enough time can permanently reduce anisotropy and, hence, reduce pump induced birefringence.