期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
变转速下L_(1,1,2)范数与张量核范数联合约束的TRPCA滚动轴承故障特征提取方法
1
作者 王冉 曹徐 +1 位作者 张军武 余亮 《振动与冲击》 EI CSCD 北大核心 2024年第7期84-93,共10页
滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号... 滚动轴承作为旋转机械设备的重要部件之一,其工作状态直接影响旋转设备的运行安全,因此其故障特征的有效提取对于保障机械设备正常运行具有重要的意义。实际应用中滚动轴承通常以变化的速度运行,并且单一传感器采集的轴承的非平稳信号往往被严重的背景噪声覆盖,使得故障特征的提取非常困难。为了解决这一问题,提出一种变转速下L_(1,1,2)范数与张量核范数联合约束的张量主成分分析(tensor robust principal component analysis,TRPCA)滚动轴承故障特征提取方法。首先,使用时频表示(time-frequency representation,TFR)作为正向切片构建张量,分别探讨滚动轴承时变故障特征在张量域中的管稀疏性和背景噪声在张量域中的低管秩性。进而使用L_(1,1,2)范数与张量核范数联合约束的TRPCA对故障特征张量进行提取,得到管稀疏的故障特征张量。最后将提取的故障特征张量在通道索引中进行融合,得到能够有效表征故障特征的时频表示。仿真和试验分析验证了该方法在轴承故障特征提取中的有效性。 展开更多
关键词 张量 故障特征提取 变转速工况 张量主成分分析(Trpca) 管稀疏
下载PDF
A new image processing method for discriminating internal layers from radio echo sounding data of ice sheets via a combined robust principal component analysis and total variation approach 被引量:2
2
作者 LANG ShiNan ZHAO Bo +1 位作者 LIU XiaoJun FANG GuangYou 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期838-846,共9页
Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely us... Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely used for improving the signal to noise ratio(SNR)and discriminating internal layers by radio echo sounding data of ice sheets.This method is not efficient when we use edge detection operators to obtain accurate information of the layers,especially the ice-bed interface.This paper presents a new image processing method via a combined robust principal component analysis-total variation(RPCA-TV)approach for discriminating internal layers of ice sheets by radio echo sounding data.The RPCA-based method is adopted to project the high-dimensional observations to low-dimensional subspace structure to accelerate the operation of the TV-based method,which is used to discriminate the internal layers.The efficiency of the presented method has been tested on simulation data and the dataset of the Institute of Electronics,Chinese Academy of Sciences,collected during CHINARE 28.The results show that the new method is more efficient than the previous method in discriminating internal layers of ice sheets by radio echo sounding data. 展开更多
关键词 robust principal component analysis (rpca total variation (TV) discriminating internal layers from radio echo sounding data of ice sheets conjugate gradient method
原文传递
Mainlobe jamming suppression via improved BSS method for rotated array radar 被引量:1
3
作者 ZHANG Hailong ZHANG Gong +1 位作者 XUE Biao YUAN Jiawen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1151-1158,共8页
This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and... This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR. 展开更多
关键词 mainlobe jamming blind signal separation(BSS) robust principal component analysis(rpca) peak to average power ratio(PAPR)
下载PDF
基于RPCA及低秩表示的气液两相流动图像中气泡图像分离研究
4
作者 魏文君 李海广 +1 位作者 郭旭凯 吴晅 《真空科学与技术学报》 EI CAS CSCD 北大核心 2023年第4期339-349,共11页
气液两相流中对气泡的测量研究是非常重要的,气泡测量技术中,如何实现气泡与背景分离是研究的重点问题。现有的测量技术大多采用图像二值化、边缘检测、图像滤波等方法来实现气泡信息的提取,而这些测量方法往往是存在不足的,仅仅针对单... 气液两相流中对气泡的测量研究是非常重要的,气泡测量技术中,如何实现气泡与背景分离是研究的重点问题。现有的测量技术大多采用图像二值化、边缘检测、图像滤波等方法来实现气泡信息的提取,而这些测量方法往往是存在不足的,仅仅针对单一图片或者需要人为手动选取。本文通过SVD(单值分解)和RPCA(鲁棒主成分分析法)对气液两相流中的气泡图像进行背景分离,其方法主要有两个特点:连续相关性和自动获取性。并提出逐行累加和逐列累加的方法,测量气泡的运动过程形态。研究表明,相比于原始的图像分离技术,利用RPCA运算,对气泡的定位、大小和速度表示都更准确。 展开更多
关键词 气液两相流 SVD分解 rpca主成分分析 特征提取
下载PDF
基于RPCA的地基SAR近距强耦合信号抑制算法研究
5
作者 林赟 时清 +3 位作者 王彦平 李洋 申文杰 田子威 《电子与信息学报》 EI CSCD 北大核心 2023年第4期1321-1329,共9页
地基合成孔径雷达(GBSAR)是一种全天时全天候非接触式大面积区域高精度形变监测手段,在矿区、边坡、大坝等区域的监测具有广泛应用。在封闭空间监测站中对外场进行连续监测时,雷达接收的回波信号会受到封闭空间的强散射信号干扰。近距... 地基合成孔径雷达(GBSAR)是一种全天时全天候非接触式大面积区域高精度形变监测手段,在矿区、边坡、大坝等区域的监测具有广泛应用。在封闭空间监测站中对外场进行连续监测时,雷达接收的回波信号会受到封闭空间的强散射信号干扰。近距离强散射信号耦合到雷达接收端形成虚假目标,严重影响成像质量。该文提出使用RPCA算法,在距离多普勒域将回波信号分解为低秩和稀疏两部分,利用距离多普勒域耦合信号的低秩特性,以及场景信号的稀疏特性,将耦合信号与场景信号有效分离。不同于基于PCA的已有耦合信号抑制方法,RPCA对场景回波信号本身没有高斯分布假设要求,这一假设要求在实际中通常是不满足的。此外,该文提出基于相关性分析的RPCA正则化系数优化选择方法,以实现低秩与稀疏的较优分离。该文通过实际GBSAR数据处理验证了方法的有效性,相比于已有的基于PCA的算法,基于RPCA的耦合信号抑制方法能够在保留场景回波信号的同时更好地抑制耦合信号。 展开更多
关键词 地基合成孔径雷达(GBSAR) 耦合信号抑制 鲁棒主成分分析(rpca) 主成分分析(PCA)
下载PDF
基于RPCA低秩稀疏分解的循环频率检测方法
6
作者 王冉 余龙靖 +1 位作者 余亮 蒋伟康 《振动与冲击》 EI CSCD 北大核心 2023年第4期88-94,共7页
在强噪声干扰时循环频率的准确检测对于循环平稳信号处理有重要意义。该研究提出了一种低信噪比(signal-to-noise ratio, SNR)下将基于鲁棒主成分分析(robust principal component analysis, RPCA)的低秩稀疏分解技术应用于循环谱密度(c... 在强噪声干扰时循环频率的准确检测对于循环平稳信号处理有重要意义。该研究提出了一种低信噪比(signal-to-noise ratio, SNR)下将基于鲁棒主成分分析(robust principal component analysis, RPCA)的低秩稀疏分解技术应用于循环谱密度(cyclic spectral density, CSD)矩阵,从而进行循环频率检测的新方法。首先,采用RPCA将循环谱密度矩阵分解为表示噪声干扰的低秩矩阵和表示循环平稳特征的稀疏矩阵。随后,利用稀疏矩阵构造检测函数实现循环频率的自动检测。仿真结果证明了该方法在强噪声干扰下检测概率方面的优越性,并可根据检测各阶循环频率谐波的受试者工作特征(receiver operating characteristic, ROC)曲线为不同信噪比条件下选择检测阶数提供参考。为了进一步验证该方法在应用中的有效性,将该方法应用于滚动轴承的早期故障诊断中。滚动轴承加速疲劳寿命试验数据上的分析结果证明该方法能够在轴承早期故障阶段从低SNR的振动信号中准确检测出轴承的故障特征频率,实现轴承的早期故障诊断。 展开更多
关键词 循环频率检测 鲁棒主成分分析(rpca) 低秩稀疏分解 循环谱密度(CSD) 滚动轴承故障诊断
下载PDF
面向复杂场景的多通道慢速动目标稳健检测算法
7
作者 刘昆 贺雄鹏 +2 位作者 廖桂生 余悦 王麒凯 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2018-2027,共10页
针对鲁棒主成分分析(RPCA)算法在多通道慢速地面动目标指示(GMTI)中存在的高虚警以及对通道误差敏感问题,该文提出一种数据重构与速度合成孔径雷达(VSAR)-RPCA联合处理的方法。首先,通过样本挑选与联合像素法完成通道间数据精确重构;然... 针对鲁棒主成分分析(RPCA)算法在多通道慢速地面动目标指示(GMTI)中存在的高虚警以及对通道误差敏感问题,该文提出一种数据重构与速度合成孔径雷达(VSAR)-RPCA联合处理的方法。首先,通过样本挑选与联合像素法完成通道间数据精确重构;然后结合VSAR检测模式提出一种新的RPCA优化模型,通过采用交替投影乘子法对其进行求解得到空间频域的稀疏矩阵,进一步利用动目标与强杂波残余在空间频域通道的分布特性差异实现强杂波残余剔除与动目标检测;最后采用沿航迹干涉算法估计目标径向速度完成动目标重定位。相较于传统RPCA算法,所提算法在非理想强杂波背景下的虚警率显著降低。理论分析与实测实验验证了所提算法的有效性。 展开更多
关键词 合成孔径雷达 地面动目标检测 鲁棒主成分分析 数据重构
下载PDF
基于RPCA的图像模糊边缘检测算法 被引量:7
8
作者 李姗姗 陈莉 +1 位作者 张永新 袁娅婷 《计算机科学》 CSCD 北大核心 2018年第5期273-279,290,共8页
针对传统边缘检测方法未能在抗噪性能与边缘检测精度之间取得较好的权衡的问题,利用鲁棒主成分分析模型良好的矩阵恢复能力与图像模糊边缘检测算法较佳的边缘检测性能,提出一种基于RPCA的图像模糊边缘检测算法,将图像的边缘检测问题转... 针对传统边缘检测方法未能在抗噪性能与边缘检测精度之间取得较好的权衡的问题,利用鲁棒主成分分析模型良好的矩阵恢复能力与图像模糊边缘检测算法较佳的边缘检测性能,提出一种基于RPCA的图像模糊边缘检测算法,将图像的边缘检测问题转化为图像主成分的边缘检测问题。该算法对含噪图像进行RPCA分解,得到对应的稀疏图像和低秩图像,再用一种基于阈值的隶属函数将低秩图像转化至等效的模糊特征平面,并在该特征平面上进行模糊增强运算,最后进行空域转化及边缘提取等操作得到最终的边缘图像。实验结果表明,该算法提高了边缘定位的精度,对不同类型、不同强度的噪声均具有较好的抑制能力,适用于对实时性要求不高的图像处理。 展开更多
关键词 鲁棒主成分分析 低秩图像 边缘检测 隶属函数 模糊特征平面
下载PDF
基于全变分-核回归的RPCA运动目标检测方法 被引量:3
9
作者 何伟 齐琦 +1 位作者 吴健辉 涂兵 《小型微型计算机系统》 CSCD 北大核心 2017年第8期1916-1920,共5页
近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归... 近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归的RPCA运动目标检测方法.该方法以RPCA为基础,利用3维全变分模型增强前景的时空连续性,去除动态背景干扰,得到清晰完整的前景.同时,利用基于扩散张量的核回归对背景的时空相关性建模,去除噪声干扰,从而精确恢复背景.在多组公开数据集上的实验结果表明,该方法在动态背景、光照变化等复杂场景中能够较为精确地检测出运动目标和恢复背景. 展开更多
关键词 运动目标检测 背景恢复 全变分 核回归 鲁棒主成分分析
下载PDF
基于WSN的旋转机械设备故障时频监测方法 被引量:1
10
作者 孙留存 胡从川 钱大龙 《机械与电子》 2024年第3期76-80,共5页
由于旋转机械设备结构和振源较为复杂,以单一故障经验设置的阈值无法准确分解多模态故障,为提升故障监测效果,提出基于WSN的旋转机械设备故障时频监测方法。引入集合经验模态分解故障时频信号,分解不同时刻的振动信号,计算IMF分量的能量... 由于旋转机械设备结构和振源较为复杂,以单一故障经验设置的阈值无法准确分解多模态故障,为提升故障监测效果,提出基于WSN的旋转机械设备故障时频监测方法。引入集合经验模态分解故障时频信号,分解不同时刻的振动信号,计算IMF分量的能量,结合归一化能量指标和IMF矩阵奇异谱熵指标,完成旋转机械设备故障时频信号分解。根据特征分解结果,运用训练后免疫RBF神经网络监测旋转机械设备故障。实验结果表明,该方法能够缩短监测时间、提高故障监测准确率。 展开更多
关键词 集合经验模态 旋转机械设备 故障监测 时频监测 主成分分析 RBF神经网络
下载PDF
一种面向运动目标提取的对称交替方向RPCA算法 被引量:1
11
作者 吴高宇 邵振洲 +2 位作者 渠瀛 施智平 关永 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1349-1353,共5页
基于鲁棒主成分分析(RPCA)的运动目标提取对背景变化具有良好的鲁棒性,但传统的基于交替方向法(ADM)的鲁棒主成分分析方法存在计算量大、耗时长等缺陷.为了克服这些问题,一种对称交替方向法(SADM)被提出来,该方法优化了原ADM迭代策略,... 基于鲁棒主成分分析(RPCA)的运动目标提取对背景变化具有良好的鲁棒性,但传统的基于交替方向法(ADM)的鲁棒主成分分析方法存在计算量大、耗时长等缺陷.为了克服这些问题,一种对称交替方向法(SADM)被提出来,该方法优化了原ADM迭代策略,在一次迭代中对线性约束乘数更新两次,减少了计算成本很大的奇异值分解(SVD)执行的次数,同时加入了新的均衡参数和停机准则,以提高运动目标的提取精度,避免多余的迭代以减少运行时间.通过F测度这一衡量指标对实验结果进行量化,提出的算法比对比算法的提取精度平均提高33.04%,运行时间相对原ADM提高了98.8%. 展开更多
关键词 运动目标提取 鲁棒主成分分析 交替方向法 奇异值分解 停机准则
下载PDF
基于RPCA的小孔径垂直阵辐射噪声测量方法 被引量:2
12
作者 蒋国庆 孙超 +1 位作者 刘雄厚 蒋光禹 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第10期1493-1499,共7页
测量辐射噪声时,小孔径垂直阵由于阵增益小,低信噪比时辐射噪声测量的性能较差。针对这一问题,本文提出一种低信噪比下基于稳健主成分分析的小孔径垂直阵辐射噪声测量方法。当阵元接收的环境噪声以非相关噪声为主时,本方法通过稳健主成... 测量辐射噪声时,小孔径垂直阵由于阵增益小,低信噪比时辐射噪声测量的性能较差。针对这一问题,本文提出一种低信噪比下基于稳健主成分分析的小孔径垂直阵辐射噪声测量方法。当阵元接收的环境噪声以非相关噪声为主时,本方法通过稳健主成分分析将数据协方差矩阵分解成低秩的信号协方差矩阵和稀疏的噪声协方差矩阵,再通过信号协方差矩阵计算辐射信号的声源级,降低了环境噪声的影响。数值仿真结果表明:当快拍数足够大时,稳健主成分分析方法可以完全消除非相关噪声分量,而即使快拍数较少,使用稳健主成分分析方法也能消除部分环境噪声,因此使用稳健主成分分析的辐射噪声测量方法比直接进行测量性能更好。 展开更多
关键词 舰船辐射噪声 噪声级测量 稳健主成分分析 低信噪比 噪声消除 小孔径阵 垂直阵
下载PDF
基于RPCA视频去噪算法的自适应优化方法 被引量:1
13
作者 李小利 杨晓梅 《计算机应用与软件》 CSCD 2016年第9期215-220,共6页
传统去噪算法不能在尽量滤除噪声的同时很好地保持原始图像信息。针对这种情况,提出基于鲁棒主成分分析的自适应视频去噪算法。首先根据视频数据的低秩性和噪声的稀疏性,利用加速近端梯度方法重建出原始视频的低秩部分和稀疏部分,实现... 传统去噪算法不能在尽量滤除噪声的同时很好地保持原始图像信息。针对这种情况,提出基于鲁棒主成分分析的自适应视频去噪算法。首先根据视频数据的低秩性和噪声的稀疏性,利用加速近端梯度方法重建出原始视频的低秩部分和稀疏部分,实现噪声的初步分离;其次利用自适应中值滤波器进行预滤波处理,提高块匹配精度,进一步去除视频噪声;最后引入自适应奇异值阈值法,增强图像细节边缘信息,降低迭代优化算法的时间复杂度。实验结果表明,该方法不仅能极大程度地恢复出原始视频序列,还能自适应地去除干扰噪声。不论从客观指标PSNR值还是从主观视觉,该方法与传统去噪方法相比都具有很大的优势。 展开更多
关键词 视频去噪 低秩性 鲁棒主成分分析 自适应奇异值阈值
下载PDF
时空RPCA在复杂场景下的运动目标检测 被引量:4
14
作者 张超婕 余勤 《计算机工程与设计》 北大核心 2020年第1期197-202,共6页
在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观... 在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观测矩阵上通过拉普拉斯特征映射得到时空图拉普拉斯矩阵,将得到的时空图拉普拉斯矩阵嵌入低秩背景矩阵以保持背景对噪声和离群值的鲁棒性。实验结果表明,所提模型在复杂场景中能较准确检测出运动目标。 展开更多
关键词 鲁棒主成分分析 非凸加权核范数 时空低秩rpca算法 拉普拉斯特征映射 运动目标检测
下载PDF
基于多通道SAR系统的ATI-RPCA地面动目标指示方法 被引量:5
15
作者 傅东宁 廖桂生 +1 位作者 黄岩 刘军 《系统工程与电子技术》 EI CSCD 北大核心 2021年第1期48-54,共7页
针对强杂波背景下的多通道合成孔径雷达(multi-channel synthetic aperture radar,MC-SAR)系统,结合沿航迹干涉(along-track interferometry,ATI)方法和稳健的主成分分析(robust principal component analysis,RPCA)方法,提出一种ATI-R... 针对强杂波背景下的多通道合成孔径雷达(multi-channel synthetic aperture radar,MC-SAR)系统,结合沿航迹干涉(along-track interferometry,ATI)方法和稳健的主成分分析(robust principal component analysis,RPCA)方法,提出一种ATI-RPCA的地面动目标指示方法。与传统的ATI方法相比,该方法可以提供更稳健的性能,但增加了一定的计算复杂度;与经典的RPCA算法相比,该方法可以降低虚警概率(probability of false alarm,PFA)并降低运算复杂度。总体而言,所提方法提供了较为稳健快速的目标检测性能,最后通过将所提方法应用到实测三通道SAR数据中,得到的结果与本文的理论分析一致。 展开更多
关键词 多通道合成孔径雷达 地面动目标指示 沿航迹干涉稳健主成分分析方法 虚警概率
下载PDF
基于光流法与RPCA的红外运动目标检测 被引量:5
16
作者 于雯越 安博文 赵明 《现代计算机(中旬刊)》 2018年第8期66-71,共6页
对区域生态及海表时空监测系统中的红外视频图像进行运动目标检测,提出鲁棒主成分分析(RPCA)和光流法结合的检测算法。对图像RPCA算法提取出的稀疏前景寻找特征点,利用金字塔Lucas-Kanade(LK)流法计算特征点并进行目标运动估计,得到目... 对区域生态及海表时空监测系统中的红外视频图像进行运动目标检测,提出鲁棒主成分分析(RPCA)和光流法结合的检测算法。对图像RPCA算法提取出的稀疏前景寻找特征点,利用金字塔Lucas-Kanade(LK)流法计算特征点并进行目标运动估计,得到目标运动的区域。再通过形态学分割得到最终的前景目标并进行跟踪。该算法在检测过程中避免背景像素点所带来的影响,消除背景减除法在运动目标提取过程中容易出现的"空洞"现象,弥补单独使用光流法检测耗时、计算复杂的缺陷。仿真结果表明,该算法具有鲁棒性优点,可应用于实际场景中,可以在具有复杂背景的环境中准确地提取出运动目标。 展开更多
关键词 鲁棒主成分分析(rpca) 红外图像 运动目标 LK光流法 角点检测
下载PDF
基于MIMIC算法和RPCA的混合蚁群优化算法 被引量:2
17
作者 官娟 刘国华 +2 位作者 刘天祺 秦健 张淼森 《南京信息工程大学学报(自然科学版)》 CAS 2020年第5期569-576,共8页
为提高连续域上蚁群算法的寻优性能,降低决策变量之间的相关性,设计一种基于MIMIC算法和RPCA的连续域上蚁群优化算法.本文首先介绍连续域上的蚁群算法;然后根据一些处理多变量相关性的方法,给出有效相关性的定义;接着提出一种基于MIMIC... 为提高连续域上蚁群算法的寻优性能,降低决策变量之间的相关性,设计一种基于MIMIC算法和RPCA的连续域上蚁群优化算法.本文首先介绍连续域上的蚁群算法;然后根据一些处理多变量相关性的方法,给出有效相关性的定义;接着提出一种基于MIMIC算法和RPCA的混合蚁群算法;最后,通过对标准测试函数进行优化求解实验,将所得结果与连续域上的蚁群优化算法相比较,可知该算法在寻优能力和收敛性方面都有明显的提高,是一种有效的优化算法. 展开更多
关键词 蚁群优化算法 变量相关性 MIMIC算法 鲁棒主成分分析(rpca)
下载PDF
双加权Lp范数RPCA模型及其在椒盐去噪中的应用 被引量:1
18
作者 董惠雯 禹晶 +1 位作者 郭乐宁 肖创柏 《数据采集与处理》 CSCD 北大核心 2021年第1期133-146,共14页
鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权L... 鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权Lp范数的RPCA模型,利用加权S p范数低秩项和加权Lp范数稀疏项分别对RPCA框架中的低秩恢复问题和稀疏恢复问题进行建模,使其更接近秩函数和L0范数最小化问题的解,提升了矩阵秩估计和稀疏估计的准确性。为了验证模型性能,本文利用图像的非局部自相似性,结合相似图像块组的低秩性与椒盐噪声的稀疏性,将双加权Lp范数鲁棒主成分分析模型应用于去除椒盐噪声过程中。定量与定性的实验结果表明,本文模型性能优于其他模型,同时奇异值过收缩分析也表明本文模型能够有效抑制秩成分的过度收缩。 展开更多
关键词 图像去噪 鲁棒主成分分析 低秩 稀疏 非局部自相似性
下载PDF
基于KPCA-LSTM的旋转机械剩余使用寿命预测 被引量:1
19
作者 曹现刚 叶煜 +2 位作者 赵友军 段雍 杨鑫 《振动与冲击》 EI CSCD 北大核心 2023年第24期81-91,共11页
旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网... 旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。 展开更多
关键词 旋转机械 核主成分分析(KPCA) 贝叶斯参数优化 长短期记忆网络(LSTM) 剩余使用寿命(RUL)预测
下载PDF
基于数字孪生控制的精密机床热误差模型 被引量:6
20
作者 宋飞虎 王梦柯 +1 位作者 尹静 吕长飞 《机电工程》 CAS 北大核心 2023年第3期391-398,共8页
已有的研究结果表明,机床的热误差约占其总加工误差的40%~70%,且机床越精密,其热误差所占比例就越大,因此,通过控制热误差以提升机床的加工精度很有必要。针对机床热误差模型的预测精度不高和泛化能力不强的问题,提出了一种引入主轴转速... 已有的研究结果表明,机床的热误差约占其总加工误差的40%~70%,且机床越精密,其热误差所占比例就越大,因此,通过控制热误差以提升机床的加工精度很有必要。针对机床热误差模型的预测精度不高和泛化能力不强的问题,提出了一种引入主轴转速,并可嵌入数字孪生控制系统的机床热误差建模方法。首先,对模糊聚类分析(FCA)、灰色关联分析(GCA)及主成分回归(PCR)方法进行了理论分析;然后,以某立式加工中心为对象,通过热特性实验,获得了转速图谱下的温度数据和热误差数据,并采用模糊聚类分析结合灰色关联分析的方法选取了其温度敏感点;最后,以主轴转速和温度敏感点的温升值为输入变量,采用PCR方法建立了机床热误差模型,并将其与多元线性回归(MLR)模型进行了效果对比。研究结果表明:相比于MLR模型,所建立的PCR模型的预测精度提升9.5%,证明该模型拥有更高的预测精度和更强的泛化能力;可将模型嵌入到数字孪生控制系统中,对机床进行实时热误差预测和热误差控制。 展开更多
关键词 数控机床加工误差 热误差控制 主成分回归分析 多元线性回归模型 主轴转速 温度敏感点 热特性实验
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部