This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry...This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.展开更多
A new process was used for producing FeAl alloy pow de rs with double consumable rotating electrodes and the powders made in this appar atus were analyzed. In this new technology, tungsten rod serves as a cathode ele ...A new process was used for producing FeAl alloy pow de rs with double consumable rotating electrodes and the powders made in this appar atus were analyzed. In this new technology, tungsten rod serves as a cathode ele ctrode, while the alloy rod as an anode electrode. The conventional rotating ele ctrode process must have an anode with pre-melting alloys; however, in this new process, using pure iron as cathode electrode and pure aluminum as anode electr ode can eliminate the step of pre-melting. The effects of process variables, which include electrode rotational speed, a nd electrode diameter of the mean particle diameter were determined. Results showed that both the rotational speed and diameter of electrodes would a ffect the mean diameter of particles. There are three kinds of powders with diff erent composition produced in this study and the possible mechanisms are discuss ed. The process parameters and volume mean diameter of the powders have been cor related to find an experimental equation. The results show that when the rotational speed and the diameter of the anode el ectrode are increased, the powders size will decrease. However, the powders size will increase with cathode electrode.展开更多
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c...The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.展开更多
In this study,the characteristics and solidification behavior of Ti-48Al-3Nb-1.5Ta powder produced by supreme-speed plasma rotating electrode process(SS-PREP®)were investigated.The microstructure,phase and charac...In this study,the characteristics and solidification behavior of Ti-48Al-3Nb-1.5Ta powder produced by supreme-speed plasma rotating electrode process(SS-PREP®)were investigated.The microstructure,phase and characteristics were analyzed by scanning electron microscopy,X-ray diffraction and other methods.The atomization mechanism is direct drop formation.The relationship between the particle size and cooling rate is vc=3.14×10^(-7)·d^(-2)+1.18×10^(-2)·d^(3/2),and the relationship between secondary dendrite arm space and the particle size isλ=0.028d+0.11,as well as the relationship between SDAS and cooling rate isλ=4.84×10^(-5)·T^(-1.43).With increase in particle size,the surface structure gradually changes from the featureless smooth structure to dendritic and cellular dendritic morphology,and the flow ability becomes better.The carbides mainly exist within 5 nm of the surface and the oxidation layer is about 20 nm thick.Ti-48Al-3Nb-1.5Ta powder was mainly composed ofα2 phase andγphase.With increase in particle size,the content ofγphase increases,and the hardness decreases accordingly.The 106–250μm particles are composed of multiple grains with the grain size of 70–80μm.The microstructure,phase composition and hardness of different TiAl powders with the same size are similar,but the elastic modulus is different.展开更多
The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was s...The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.展开更多
The paper presents the influence of relative electrode-electrolyte movement over productivity for silver ions recovery by electrodeposition from diluted solutions. Wasted photographic fixing agent solution in various ...The paper presents the influence of relative electrode-electrolyte movement over productivity for silver ions recovery by electrodeposition from diluted solutions. Wasted photographic fixing agent solution in various concentrations was used. For each concentration three regimes were studied: stationary, electrode rotation with 100 rpm and electrode rotation with 300 rpm. Polarization curves were drawn and working conditions from silver recovery point of view were discussed.展开更多
The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indi...The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.展开更多
In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superallo...In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.展开更多
Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium ch...Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.展开更多
In order to understand the relation between microstructure of superalloypowders and its solidification progress, the processing parameters are optimized during plasmarotating electrode processing (PREP). It was predic...In order to understand the relation between microstructure of superalloypowders and its solidification progress, the processing parameters are optimized during plasmarotating electrode processing (PREP). It was predicted from the results that the droplet velocities,droplet temperature, and fractional solidification with flight time about FGH95 superalloy droplethave been carried out based on Newtonian heat transfer formulation coupled with the classicalheterogeneous nucleation and the specific solidification process. It has been found that the dropletdynamic and thermal behavior is strongly affected by the distribution of droplet diameters, theproportion of cooling atmosphere, but is relatively unaffected by the droplet superheat.展开更多
The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffu...The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol wa...The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol was performed by one step, and at higher pH values, the electrochemical polymerization of catechol was carried out by two steps, i.e . oxidation of catechol and followed by polymerization. The intermediates generated at the disk were detected at the ring electrode in the ring potential region of -0.2 to 0 V (vs. Ag/AgCl). One of reasons for the decrease in the ratio of i r to i d with increasing the ring potential is caused by formation of positively charged intermediates at the disk electrode. This ratio increases with increasing the rotation rate of the RRDE, which indicates that the intermediates are not stable. A shielding effect during polymerization of catechol was observed when the ring potential was set at 0.1 V (vs. Ag/AgCl). The electron spin resonance (ESR) of polycatechol shows that polycatechol possesses unpaired electrons. The images of polycatechol films synthesized at different conditions are described.展开更多
Magnesium ions, which exist in formation water and injection water under downhole conditions in the oil and gas production industry, are a key determinant in the CaCO_3 scale formation. Many studies have focused their...Magnesium ions, which exist in formation water and injection water under downhole conditions in the oil and gas production industry, are a key determinant in the CaCO_3 scale formation. Many studies have focused their attention on the effect of magnesium on the kinetics, the morphology and the content of Mg in the CaCO_3 scale. Little attention has been paid to the effect of Mg 2+ on the initial stages of CaCO_3 formation on a metal surface. In this study, an electrochemical technique was used to study the influence of Mg 2+ on the initial stages of CaCO_3 scale formed on a metal surface. With this electrochemical technique, the reduction of the dissolved oxygen in an analysis solution is considered on the surface of a rotating disk electrode(RDE) under potentiostatic control.The rate of oxygen reduction on the surface of the RDE enables the extent of surface coverage of scale to be assessed. With this electrochemical technique, a new insight into the effect of Mg 2+ on CaCO_3 scale formed on a metal surface is given.展开更多
In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect...In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.展开更多
The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution o...The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution of platinum in the polymer matrix and consequently lead to different currents of methanol oxidation. The results show that platinum loading is proportional to rotation ratesΩ1/2.展开更多
The test apparatus used for investigating erosion-corrosion in aqueous media, including the pipe flow loop, impinging jet, rotating disk and rotating cylinder rigs is reviewed. With combining the impinging jet rig and...The test apparatus used for investigating erosion-corrosion in aqueous media, including the pipe flow loop, impinging jet, rotating disk and rotating cylinder rigs is reviewed. With combining the impinging jet rig and rotating cylinder electrode rig, the hydrodynamic characteristics of both rigs are analysed.展开更多
Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass tra...Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.展开更多
Electrochemical studies of the effect of hydrodynamic conditions on corrosion inhibition of Cu-Ni (90/10) alloy in synthetic seawater and sulphide containing synthetic seawater by 1,2,3-benzotriazole (BTAH) are pr...Electrochemical studies of the effect of hydrodynamic conditions on corrosion inhibition of Cu-Ni (90/10) alloy in synthetic seawater and sulphide containing synthetic seawater by 1,2,3-benzotriazole (BTAH) are presented. Impedance, potentiodynamic polarization and cyclic voltammetric (CV) studies are employed in the present investigation. The studies are carried out by using Cu-Ni (90/10) alloy rotating disc electrode at different rotation speeds and at different immersion periods. Reynolds numbers at each rotation speed infer that the flow of seawater is laminar. With increasing rotation speed of the electrode immersed in seawater without sulphide and BTAH, both the charge transfer resistance (Rot) and film resistance (Rf^lm) are increased. However, in the presence of sulphide ions and without BTAH, both the Rot and Rf,m are found to decrease with increasing rotation speed at identical immersion periods. Interestingly, when BTAH is added to seawater or seawater containing sulphide, both the Rot and Rf,m are increased to such a great extent that an inhibition efficiency of 99.99% is obtained. In the presence of BTAH, the phase angle Bode plots are more broadened and the maximum values of phase angle are increased to a value close to 90~ as the rotation speed is increased. The BTAH film is highly protective even under hydrodynamic condition also. Potentiodynamic polarization studies infer that BTAH functions as a mixed inhibitor under hydrodynamic conditions also. CV studies reveal that the protective BTAH film is stable even at anodic potentials of +850 mV vs Ag/AgCI.展开更多
Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxi...Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxide(GO)and MXene combining with polystyrene(PS)particles as sacrificial templates(Pd/GO-MXene-PS)to elevate the catalytic performance for ethanol oxidation was proposed.The 3D porous interconnected structure of Pd/GO-MXene-PS was characterized by scanning electron microscope(SEM),transmission electron microscope(TEM)and Brunner−Emmet−Teller(BET).By optimizing the doping ratio of MXene to GO,the mass activity of Pd/GO_(5)-MXene_(5)-PS(2944.0 mA·mg^(−1))was 3.0 times higher than that of commercial Pd/C(950.4 mA·mg^(−1))toward ethanol oxidation in base solution.Meanwhile,the rotating disk electrode(RDE)results demonstrated that Pd/GO5-MXene5-PS had a faster kinetics of ethanol oxidation.The enhanced ethanol oxidation over Pd/GO5-MXene5-PS could attribute to the excellent 3D interconnected porous structure,large surface area,good conductivity and homogeneous Pd distribution.This work provided a new idea for creating 3D porous MXene composite materials in electrocatalysis.展开更多
基金Project(2016KJXX-78)supported by the Shaanxi Youth Science and Technology New Star Project,ChinaProject(2016KTCQ01-113)supported by the Shaanxi Science and Technology Co-ordination and Innovation Project,China+1 种基金Project(51604228)supported by the National Natural Science Foundation of ChinaProject supported by the Open Fund of State Key Laboratory for Powder Metallurgy,Central South University,China
文摘This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.
文摘A new process was used for producing FeAl alloy pow de rs with double consumable rotating electrodes and the powders made in this appar atus were analyzed. In this new technology, tungsten rod serves as a cathode ele ctrode, while the alloy rod as an anode electrode. The conventional rotating ele ctrode process must have an anode with pre-melting alloys; however, in this new process, using pure iron as cathode electrode and pure aluminum as anode electr ode can eliminate the step of pre-melting. The effects of process variables, which include electrode rotational speed, a nd electrode diameter of the mean particle diameter were determined. Results showed that both the rotational speed and diameter of electrodes would a ffect the mean diameter of particles. There are three kinds of powders with diff erent composition produced in this study and the possible mechanisms are discuss ed. The process parameters and volume mean diameter of the powders have been cor related to find an experimental equation. The results show that when the rotational speed and the diameter of the anode el ectrode are increased, the powders size will decrease. However, the powders size will increase with cathode electrode.
基金Grant PID2020-115848RB-C21 "STORELEC" projectTED2021-129694B-C22 "DEFY-CO2" project funded by MCIN/AEI/10.13039/501100011033+3 种基金LMP253_ (2)1 project funded by Gobierno de AragónGrant IJC2019-041874-I funded by the MCIN/AEI/10.13039/501100011033CSIC for her JAE Intro ICU 2021-ICB-04 grantthe Y2020/EMT-6419 "CEOTRES" project funded by the Comunidad Autonoma de Madrid。
文摘The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.
基金financially supported by the Key R&D Program of Shaanxi(Program No.2022GY-388).
文摘In this study,the characteristics and solidification behavior of Ti-48Al-3Nb-1.5Ta powder produced by supreme-speed plasma rotating electrode process(SS-PREP®)were investigated.The microstructure,phase and characteristics were analyzed by scanning electron microscopy,X-ray diffraction and other methods.The atomization mechanism is direct drop formation.The relationship between the particle size and cooling rate is vc=3.14×10^(-7)·d^(-2)+1.18×10^(-2)·d^(3/2),and the relationship between secondary dendrite arm space and the particle size isλ=0.028d+0.11,as well as the relationship between SDAS and cooling rate isλ=4.84×10^(-5)·T^(-1.43).With increase in particle size,the surface structure gradually changes from the featureless smooth structure to dendritic and cellular dendritic morphology,and the flow ability becomes better.The carbides mainly exist within 5 nm of the surface and the oxidation layer is about 20 nm thick.Ti-48Al-3Nb-1.5Ta powder was mainly composed ofα2 phase andγphase.With increase in particle size,the content ofγphase increases,and the hardness decreases accordingly.The 106–250μm particles are composed of multiple grains with the grain size of 70–80μm.The microstructure,phase composition and hardness of different TiAl powders with the same size are similar,but the elastic modulus is different.
文摘The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.
文摘The paper presents the influence of relative electrode-electrolyte movement over productivity for silver ions recovery by electrodeposition from diluted solutions. Wasted photographic fixing agent solution in various concentrations was used. For each concentration three regimes were studied: stationary, electrode rotation with 100 rpm and electrode rotation with 300 rpm. Polarization curves were drawn and working conditions from silver recovery point of view were discussed.
基金This work is financially supported by The National Defence Committee of ChineseTechnology(No.95-YJ-20)
文摘The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.
文摘In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.
基金supported by the National Natural Science Foundation of China ( Grant No 40876041)Science and Technology Basic Research Program of Qingdao (Grant No 09-1-3-16-jch)the National Key Technology Research and Development Program of China (Grant No 2007 BAB27B01)
文摘Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.
基金This work was financially supported by National Defence Committee of Science and Technolgy (No. 95-YJ-20)
文摘In order to understand the relation between microstructure of superalloypowders and its solidification progress, the processing parameters are optimized during plasmarotating electrode processing (PREP). It was predicted from the results that the droplet velocities,droplet temperature, and fractional solidification with flight time about FGH95 superalloy droplethave been carried out based on Newtonian heat transfer formulation coupled with the classicalheterogeneous nucleation and the specific solidification process. It has been found that the dropletdynamic and thermal behavior is strongly affected by the distribution of droplet diameters, theproportion of cooling atmosphere, but is relatively unaffected by the droplet superheat.
文摘The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 0 0 740 2 7)
文摘The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol was performed by one step, and at higher pH values, the electrochemical polymerization of catechol was carried out by two steps, i.e . oxidation of catechol and followed by polymerization. The intermediates generated at the disk were detected at the ring electrode in the ring potential region of -0.2 to 0 V (vs. Ag/AgCl). One of reasons for the decrease in the ratio of i r to i d with increasing the ring potential is caused by formation of positively charged intermediates at the disk electrode. This ratio increases with increasing the rotation rate of the RRDE, which indicates that the intermediates are not stable. A shielding effect during polymerization of catechol was observed when the ring potential was set at 0.1 V (vs. Ag/AgCl). The electron spin resonance (ESR) of polycatechol shows that polycatechol possesses unpaired electrons. The images of polycatechol films synthesized at different conditions are described.
文摘Magnesium ions, which exist in formation water and injection water under downhole conditions in the oil and gas production industry, are a key determinant in the CaCO_3 scale formation. Many studies have focused their attention on the effect of magnesium on the kinetics, the morphology and the content of Mg in the CaCO_3 scale. Little attention has been paid to the effect of Mg 2+ on the initial stages of CaCO_3 formation on a metal surface. In this study, an electrochemical technique was used to study the influence of Mg 2+ on the initial stages of CaCO_3 scale formed on a metal surface. With this electrochemical technique, the reduction of the dissolved oxygen in an analysis solution is considered on the surface of a rotating disk electrode(RDE) under potentiostatic control.The rate of oxygen reduction on the surface of the RDE enables the extent of surface coverage of scale to be assessed. With this electrochemical technique, a new insight into the effect of Mg 2+ on CaCO_3 scale formed on a metal surface is given.
文摘In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.
文摘The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution of platinum in the polymer matrix and consequently lead to different currents of methanol oxidation. The results show that platinum loading is proportional to rotation ratesΩ1/2.
文摘The test apparatus used for investigating erosion-corrosion in aqueous media, including the pipe flow loop, impinging jet, rotating disk and rotating cylinder rigs is reviewed. With combining the impinging jet rig and rotating cylinder electrode rig, the hydrodynamic characteristics of both rigs are analysed.
基金Project supported by the Ministry of Education of China(No. 708060)the Cultivation Fund of the Key Scientific and Technical Innovation Projectthe Program for New Century Excellent Talents in University, Ministry of Education (No. NCET-08-0508),China
文摘Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.
基金Naval Research Board(NRB), Govt.of IndiaRajiv Gandhi National Fellowship(RGNF),UGC,Govt.of India
文摘Electrochemical studies of the effect of hydrodynamic conditions on corrosion inhibition of Cu-Ni (90/10) alloy in synthetic seawater and sulphide containing synthetic seawater by 1,2,3-benzotriazole (BTAH) are presented. Impedance, potentiodynamic polarization and cyclic voltammetric (CV) studies are employed in the present investigation. The studies are carried out by using Cu-Ni (90/10) alloy rotating disc electrode at different rotation speeds and at different immersion periods. Reynolds numbers at each rotation speed infer that the flow of seawater is laminar. With increasing rotation speed of the electrode immersed in seawater without sulphide and BTAH, both the charge transfer resistance (Rot) and film resistance (Rf^lm) are increased. However, in the presence of sulphide ions and without BTAH, both the Rot and Rf,m are found to decrease with increasing rotation speed at identical immersion periods. Interestingly, when BTAH is added to seawater or seawater containing sulphide, both the Rot and Rf,m are increased to such a great extent that an inhibition efficiency of 99.99% is obtained. In the presence of BTAH, the phase angle Bode plots are more broadened and the maximum values of phase angle are increased to a value close to 90~ as the rotation speed is increased. The BTAH film is highly protective even under hydrodynamic condition also. Potentiodynamic polarization studies infer that BTAH functions as a mixed inhibitor under hydrodynamic conditions also. CV studies reveal that the protective BTAH film is stable even at anodic potentials of +850 mV vs Ag/AgCI.
基金financially supported by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(No.A30B191410)the Sailing Project from Science and Technology Commission of Shanghai Municipality(No.17YF1406600)+6 种基金Chenguang Project Supported by Shanghai Municipal Education Commission(No.18CG68)Gaoyuan Discipline of Shanghai-Materials Science and Engineering(No.A30NH221903)the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices(Soochow University)(No.KS2022)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe Project of Guangdong Provincial Education(No.2020KTSCX131)。
文摘Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxide(GO)and MXene combining with polystyrene(PS)particles as sacrificial templates(Pd/GO-MXene-PS)to elevate the catalytic performance for ethanol oxidation was proposed.The 3D porous interconnected structure of Pd/GO-MXene-PS was characterized by scanning electron microscope(SEM),transmission electron microscope(TEM)and Brunner−Emmet−Teller(BET).By optimizing the doping ratio of MXene to GO,the mass activity of Pd/GO_(5)-MXene_(5)-PS(2944.0 mA·mg^(−1))was 3.0 times higher than that of commercial Pd/C(950.4 mA·mg^(−1))toward ethanol oxidation in base solution.Meanwhile,the rotating disk electrode(RDE)results demonstrated that Pd/GO5-MXene5-PS had a faster kinetics of ethanol oxidation.The enhanced ethanol oxidation over Pd/GO5-MXene5-PS could attribute to the excellent 3D interconnected porous structure,large surface area,good conductivity and homogeneous Pd distribution.This work provided a new idea for creating 3D porous MXene composite materials in electrocatalysis.