Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study t...Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,展开更多
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen...Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.展开更多
In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (...In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A ^1 Π,v = 3) with inert gases, which originates from the difference between the two A-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.展开更多
In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the c...In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.展开更多
Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate inf...Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate information, an experiment with a molecular beam is carried out, and thereby the relationship between the differential interference angle and the scattering angle is obtained. Based on the first-Born approximation of time-dependent perturbation theory, the theoretical model of CQI is developed in an atom-diatom system in the condition of the molecular beam, with the long-range interaction potential taken into account. The method of measuring correctly the differential interference angle is presented. The tendencies of the differential interference angle changing with the impact parameter and rel- ative velocity are discussed. The theoretical model presented here is important for understanding or performing the experiment in the molecular beam.展开更多
To study theoretically the relationship between the differential interference angle and the scattering angle in collisional quantum interference (CQI), we have investigated the differential interference angle of the...To study theoretically the relationship between the differential interference angle and the scattering angle in collisional quantum interference (CQI), we have investigated the differential interference angle of the atom-diatomic [case(a)] molecule system in detail. For the 2∏ electronic state in Hund's case (a), the degree of the differential interference is also discussed. The differential interference angles of NO(X^2∏) are calculated quantitatively for the rotational energy transfer in Hund's case (a) induced by collision with He, Ne and Ar atoms. The method to calculate the differential interference angle is presented. Several factors that affect the differential interference angle are investigated. Finally the variation of the differential interference angle with the impact parameter and relative velocity is discussed.展开更多
Collisional quantum interference (CQI) in the intramolecular rotational energy transfer was observed in experiment by Sha and co-workers. The interference angle, which measuring the degree of the coherence, were mea...Collisional quantum interference (CQI) in the intramolecular rotational energy transfer was observed in experiment by Sha and co-workers. The interference angle, which measuring the degree of the coherence, were measured in the experiment of the static cell. Based on the first Born approximation of time dependent perturbation theory, taking into accounts the anisotropic Lennard-Jones interaction potentials, this paper describes the theoretical model of CQI in intramolecular rotational energy transfer in an atom-diatom collision system. In the model, the differential interference angle for the experiment of the molecular beam is calculated, the changing tendencies of the differential interference angle with the impact parameter and collision partners are obtained. This theoretical model is important for understanding or performing this kind of experiments.展开更多
To study theoretically the relationship between the integral interference angle and the scat- tering angle in collisional quantum interference, the integral interference angle of atom- ^2П[case(a)] diatomic molecul...To study theoretically the relationship between the integral interference angle and the scat- tering angle in collisional quantum interference, the integral interference angle of atom- ^2П[case(a)] diatomic molecules system is described. To simulate the experiment theoretically, the theoretical model on collision-induced rotational energy transfer in an atom- ^2П[case(a)]diatom system is presented based on the first order Born approximation taking into account of the long-range interaction potential. For the ^2П electronic state in the Hund's case(a) diatom, the degree of the interference is discussed. The interference angles of collision-induced rotational energy transfer of CN(A^2П) in Hund's case(a) with He, Ne, and Ar are calculated quantitatively. The key parameters in the determination of integral interference angles are obtained.展开更多
In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standa...In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.展开更多
The nature of the principle of equivalence is explored. The path of gravitons is analyzed in an accelerating system equivalent to a gravitating system. The finite speed of the graviton results in a delay of the gravit...The nature of the principle of equivalence is explored. The path of gravitons is analyzed in an accelerating system equivalent to a gravitating system. The finite speed of the graviton results in a delay of the gravitational interaction with a particle mass. From the aberration found in the path of the graviton we derive the standard expression for the advancement of the periastron of the orbit of the mass around a star. In a similar way, by analysing the aberrations of the graviton and light paths in an accelerating reference frame, the expression for the deflection of light by a massive body is obtained identically to the standard result. We also examine the binary star system and calculate the decay in its orbital period. The decay is attributed to the redshift of the graviton frequency relative to the accelerating system. Here too, we obtain good agreement with experimental measurements. Also, hypothesizing that gravitons behave like photons, we determine the temperature of the gravitons in a binary star system and form the Bose-Einstein distribution. Finally, we show how the redshift of gravitons may be the source of dark matter, dark energy and flat line spiral galaxy rotation curves.展开更多
Based on the ERA5 reanalysis datasets during 1980-2019,a total of eleven zonal shear lines(ZSLs)that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composi...Based on the ERA5 reanalysis datasets during 1980-2019,a total of eleven zonal shear lines(ZSLs)that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composite analysis.By decomposing the kinetic energy(K)near the ZSL into divergent and rotational kinetic energies(K_(D)and K_(R))and the kinetic energy of interaction between the divergent wind and the rotational wind(K_(R)D),the influence of the rotational and divergent winds on the evolution of the ZSL intensity is investigated from the perspective of K_(D)and K_(R).The main results are as follows.The ZSL is a comprehensive reflection of rotation and convergence.The intensity evolution of ZSL is essentially synchronized with those of K,K_(R),and K_(RD)but lags behind K_(D)by about three hours.The enhancement of K is mainly contributed by K_(R),which is governed by the conversion from K_(D)to K_(R).Furthermore,the increase in the conversion from K_(D)to K_(R)is controlled by the geostrophic effect term Af,which is determined by the joint enhancement of the zonal rotational and meridional divergent wind components(u_(R)and v_(D)).Therefore,the joint enhancement of u_(R)and v_(D)controls the increase of the ZSL intensity,leading to increased precipitation.展开更多
An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(...An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(K),which can be divided into rotational wind(V_(R))kinetic energy(K_(R)),divergent wind kinetic energy(K_(D)),and the kinetic energy of the interaction between the divergent and rotational winds(K_(RD)).According to the hourly precipitation intensity variability,the ETR process was divided into an initial stage,a rapid increase stage,and maintenance stage.Results showed that the intensification and maintenance of ETR were closely related to the upper-level K,and most closely related to the upperlevel K_(R),with a correlation coefficient of up to 0.9.In particular,the peak value of hourly rainfall intensity lagged behind the K_(R) by 8 h.Furthermore,diagnosis showed that K transformation from unresolvable to resolvable scales made the ETR increase slowly.The meridional rotational wind(u_(R))and meridional gradient of the geopotential(φ)jointly determined the conversion of available potential energy(APE)to K_(R) through the barotropic process,which dominated the rapid enhancement of K_(R) and then caused the rapid increase in ETR.The transportation of K by rotational wind consumed K_(R),and basically offset the K_(R) produced by the barotropic process,which basically kept K_(R) stable at a high value,thus maintaining the ETR.展开更多
Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especiall...Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.展开更多
An energy approach is proposed to describe the electromigration induced grain rotation under high current density. The driving force is assumed to arise from the grain-boundary energy reduction and increase of the inn...An energy approach is proposed to describe the electromigration induced grain rotation under high current density. The driving force is assumed to arise from the grain-boundary energy reduction and increase of the inner energy from the joule heating. Energy dissipates by the grain boundary diffusion under electromigration and viscous boundary sliding is considered. Based on the conservation of energy production and dissipation, an equilibrium equation is developed to predict the grain rotation rate analytically. It is recognized that the grain rotates with the reducing of electrical resistivity and inversely proportional to the grain length. The theoretical prediction is compared with the experimental data, which shows good accuracy on the rotation trend and the specific rotation rate.展开更多
Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the inter...Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the interference was measured. The integral interference angle was obtaJned through theoretical calculation. We will research the factors that have effect on collisional quantum interference on rotational energy transfer in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14)-Na system. Basing on the time-dependent first order Born approximation, and taking into account the anlsotroplc Lennard Jones interaction potentials and "straight-line" trajectory approximation, we obtain the factors that have effect on CQI in Na2-Na system, and obtain the relation between the integral interference angle and rotational quantum number.展开更多
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi...The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).展开更多
As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking ...As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking into account the anisotropic Lennard-Jones interaction potential and the long-range interaction potential, the differential interference angles in singlet-triplet mixed states of CO A^1Π(v=9)-e3∑-(v=1) system in collision with He, Ne, Ar, and other partners were calculated theoretically. The relationships of differential interference angle versus impact parameters, including collision parameter b and velocity, are obtained.展开更多
In order to study the collisional quantum interference (CQI) on rotational energy transfer in atom-diatom system, we have studied the relation of the integral interference angle and differential interference angle i...In order to study the collisional quantum interference (CQI) on rotational energy transfer in atom-diatom system, we have studied the relation of the integral interference angle and differential interference angle in Naq-Na2 (A1 ∑u^+,v=8-b^3∏0u,v=14) collision system. In this paper, based on the first-Born approximation of timedependent perturbation theory and taking into accounts the anisotropic effect of Lennard-Jones interaction potentials, we present a theoretical model of collisional quantum interference in intramolecular rotational energy transfer, and a relationship between differential and integral interference angles.展开更多
A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energ...A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energy(TKE) budget. A set of numerical simulations was conducted,(1) with and without rotation,(2) at different latitudes(10°N, 30°N, 45°N, 60°N, and 80°N),(3) with wave breaking and with Langmuir circulation, and(4) under different wind speeds(5, 10, 20, and 30 m/s). The results show that eddy viscosity decreases when rotation is included, indicating that rotation weakens the turbulence strength. The TKE budget become tight with rotation and the effects of rotation grow with latitude. However, rotation become less important under Langmuir circulation since the transport term is strong in the vertical direction. Finally, simulations were conducted based on field data from the Boundary Layer and Air-Sea Transfer Low Wind(CBLAST-Low) experiment. The results, although more complex, are consistent with the results obtained from earlier simulations using ideal numerical conditions.展开更多
The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (i...The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.展开更多
基金This work was supported by National Natural Science Foundation of China(No.10374040).
文摘Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,
基金supported by the China Postdoctoral Science Foundation Funded Project (20080430038) the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (05004999200602)
文摘Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374040
文摘In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A ^1 Π,v = 3) with inert gases, which originates from the difference between the two A-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.
文摘In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374040),
文摘Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate information, an experiment with a molecular beam is carried out, and thereby the relationship between the differential interference angle and the scattering angle is obtained. Based on the first-Born approximation of time-dependent perturbation theory, the theoretical model of CQI is developed in an atom-diatom system in the condition of the molecular beam, with the long-range interaction potential taken into account. The method of measuring correctly the differential interference angle is presented. The tendencies of the differential interference angle changing with the impact parameter and rel- ative velocity are discussed. The theoretical model presented here is important for understanding or performing the experiment in the molecular beam.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374040)the Fund of the Educational Department of Liaoning Province, China (Grant No 20060347)
文摘To study theoretically the relationship between the differential interference angle and the scattering angle in collisional quantum interference (CQI), we have investigated the differential interference angle of the atom-diatomic [case(a)] molecule system in detail. For the 2∏ electronic state in Hund's case (a), the degree of the differential interference is also discussed. The differential interference angles of NO(X^2∏) are calculated quantitatively for the rotational energy transfer in Hund's case (a) induced by collision with He, Ne and Ar atoms. The method to calculate the differential interference angle is presented. Several factors that affect the differential interference angle are investigated. Finally the variation of the differential interference angle with the impact parameter and relative velocity is discussed.
基金Project supported by the Research Foundation of Department of Education of Liaoning Province (Grant No 20060347)the NNSFC (Grant No 10374040)
文摘Collisional quantum interference (CQI) in the intramolecular rotational energy transfer was observed in experiment by Sha and co-workers. The interference angle, which measuring the degree of the coherence, were measured in the experiment of the static cell. Based on the first Born approximation of time dependent perturbation theory, taking into accounts the anisotropic Lennard-Jones interaction potentials, this paper describes the theoretical model of CQI in intramolecular rotational energy transfer in an atom-diatom collision system. In the model, the differential interference angle for the experiment of the molecular beam is calculated, the changing tendencies of the differential interference angle with the impact parameter and collision partners are obtained. This theoretical model is important for understanding or performing this kind of experiments.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10374040) and the Fund of the Educational Department of Liaoning Province of China (No.20060347 and No.2008290).
文摘To study theoretically the relationship between the integral interference angle and the scat- tering angle in collisional quantum interference, the integral interference angle of atom- ^2П[case(a)] diatomic molecules system is described. To simulate the experiment theoretically, the theoretical model on collision-induced rotational energy transfer in an atom- ^2П[case(a)]diatom system is presented based on the first order Born approximation taking into account of the long-range interaction potential. For the ^2П electronic state in the Hund's case(a) diatom, the degree of the interference is discussed. The interference angles of collision-induced rotational energy transfer of CN(A^2П) in Hund's case(a) with He, Ne, and Ar are calculated quantitatively. The key parameters in the determination of integral interference angles are obtained.
基金This work has been supported by the National Natural Science Foundation of China(Grant No.12072025)Beijing Natural Science 5 Foundation(Grant No.1222015)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2022JQ-044).
文摘In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.
文摘The nature of the principle of equivalence is explored. The path of gravitons is analyzed in an accelerating system equivalent to a gravitating system. The finite speed of the graviton results in a delay of the gravitational interaction with a particle mass. From the aberration found in the path of the graviton we derive the standard expression for the advancement of the periastron of the orbit of the mass around a star. In a similar way, by analysing the aberrations of the graviton and light paths in an accelerating reference frame, the expression for the deflection of light by a massive body is obtained identically to the standard result. We also examine the binary star system and calculate the decay in its orbital period. The decay is attributed to the redshift of the graviton frequency relative to the accelerating system. Here too, we obtain good agreement with experimental measurements. Also, hypothesizing that gravitons behave like photons, we determine the temperature of the gravitons in a binary star system and form the Bose-Einstein distribution. Finally, we show how the redshift of gravitons may be the source of dark matter, dark energy and flat line spiral galaxy rotation curves.
基金the Key Program of the National Science Foundation of China(Grant No.42030611)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0105)+1 种基金the Integration Project of Major Research Program of the National Natural Science Foundation of China(Grant No.91937301)the General Program of the National Science Foundation of China(Grant No.42175008).
文摘Based on the ERA5 reanalysis datasets during 1980-2019,a total of eleven zonal shear lines(ZSLs)that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composite analysis.By decomposing the kinetic energy(K)near the ZSL into divergent and rotational kinetic energies(K_(D)and K_(R))and the kinetic energy of interaction between the divergent wind and the rotational wind(K_(R)D),the influence of the rotational and divergent winds on the evolution of the ZSL intensity is investigated from the perspective of K_(D)and K_(R).The main results are as follows.The ZSL is a comprehensive reflection of rotation and convergence.The intensity evolution of ZSL is essentially synchronized with those of K,K_(R),and K_(RD)but lags behind K_(D)by about three hours.The enhancement of K is mainly contributed by K_(R),which is governed by the conversion from K_(D)to K_(R).Furthermore,the increase in the conversion from K_(D)to K_(R)is controlled by the geostrophic effect term Af,which is determined by the joint enhancement of the zonal rotational and meridional divergent wind components(u_(R)and v_(D)).Therefore,the joint enhancement of u_(R)and v_(D)controls the increase of the ZSL intensity,leading to increased precipitation.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42275013,42030611 and 42175008)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2021LASWB17)。
文摘An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(K),which can be divided into rotational wind(V_(R))kinetic energy(K_(R)),divergent wind kinetic energy(K_(D)),and the kinetic energy of the interaction between the divergent and rotational winds(K_(RD)).According to the hourly precipitation intensity variability,the ETR process was divided into an initial stage,a rapid increase stage,and maintenance stage.Results showed that the intensification and maintenance of ETR were closely related to the upper-level K,and most closely related to the upperlevel K_(R),with a correlation coefficient of up to 0.9.In particular,the peak value of hourly rainfall intensity lagged behind the K_(R) by 8 h.Furthermore,diagnosis showed that K transformation from unresolvable to resolvable scales made the ETR increase slowly.The meridional rotational wind(u_(R))and meridional gradient of the geopotential(φ)jointly determined the conversion of available potential energy(APE)to K_(R) through the barotropic process,which dominated the rapid enhancement of K_(R) and then caused the rapid increase in ETR.The transportation of K by rotational wind consumed K_(R),and basically offset the K_(R) produced by the barotropic process,which basically kept K_(R) stable at a high value,thus maintaining the ETR.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302022,12172248,12021002,and 12132010)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.22JCQNJC00780)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2024-09)the IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology(Grant No.202306).
文摘Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.
基金supported by the National Natural Science Foundation of China(Grants 11572249 and 11772257)
文摘An energy approach is proposed to describe the electromigration induced grain rotation under high current density. The driving force is assumed to arise from the grain-boundary energy reduction and increase of the inner energy from the joule heating. Energy dissipates by the grain boundary diffusion under electromigration and viscous boundary sliding is considered. Based on the conservation of energy production and dissipation, an equilibrium equation is developed to predict the grain rotation rate analytically. It is recognized that the grain rotates with the reducing of electrical resistivity and inversely proportional to the grain length. The theoretical prediction is compared with the experimental data, which shows good accuracy on the rotation trend and the specific rotation rate.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374040
文摘Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the interference was measured. The integral interference angle was obtaJned through theoretical calculation. We will research the factors that have effect on collisional quantum interference on rotational energy transfer in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14)-Na system. Basing on the time-dependent first order Born approximation, and taking into account the anlsotroplc Lennard Jones interaction potentials and "straight-line" trajectory approximation, we obtain the factors that have effect on CQI in Na2-Na system, and obtain the relation between the integral interference angle and rotational quantum number.
文摘The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).
基金This work was supported by the National Natural Science Foundation of China (No.10374040) and the Educational Department of Liaoning Province (No.20060347).
文摘As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking into account the anisotropic Lennard-Jones interaction potential and the long-range interaction potential, the differential interference angles in singlet-triplet mixed states of CO A^1Π(v=9)-e3∑-(v=1) system in collision with He, Ne, Ar, and other partners were calculated theoretically. The relationships of differential interference angle versus impact parameters, including collision parameter b and velocity, are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.10374040the Foundation of the Educational Department of Liaoning Province under Grant Nos.2008290 and 20060347
文摘In order to study the collisional quantum interference (CQI) on rotational energy transfer in atom-diatom system, we have studied the relation of the integral interference angle and differential interference angle in Naq-Na2 (A1 ∑u^+,v=8-b^3∏0u,v=14) collision system. In this paper, based on the first-Born approximation of timedependent perturbation theory and taking into accounts the anisotropic effect of Lennard-Jones interaction potentials, we present a theoretical model of collisional quantum interference in intramolecular rotational energy transfer, and a relationship between differential and integral interference angles.
基金Supported by the National Natural Science Foundation of China(Nos.41206015,41106019)the National Basic Research Program of China(973 Program)(Nos.2011CB403501,2012CB417402)the Fund for Creative Research Groups by NSFC(No.41121064)
文摘A non-hydrostatic, Boussinesq, and three-dimensional large eddy simulation(LES) model was used to study the impact of the Earth's rotation on turbulence and the redistribution of energy in turbulence kinetic energy(TKE) budget. A set of numerical simulations was conducted,(1) with and without rotation,(2) at different latitudes(10°N, 30°N, 45°N, 60°N, and 80°N),(3) with wave breaking and with Langmuir circulation, and(4) under different wind speeds(5, 10, 20, and 30 m/s). The results show that eddy viscosity decreases when rotation is included, indicating that rotation weakens the turbulence strength. The TKE budget become tight with rotation and the effects of rotation grow with latitude. However, rotation become less important under Langmuir circulation since the transport term is strong in the vertical direction. Finally, simulations were conducted based on field data from the Boundary Layer and Air-Sea Transfer Low Wind(CBLAST-Low) experiment. The results, although more complex, are consistent with the results obtained from earlier simulations using ideal numerical conditions.
文摘The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.