Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition thr...Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition through dielectric characterization.According to the previous theoretical design rule,the Curie temperature can be suppressed by increasing the tolerance factor.So,in the present work,high-quality Ca_(3-x)LaxTi_(2-x)Al_(x)O_(7)(x=0.0,0.1,0.2,0.3)ceramics with increased tolerance factors were successfully prepared.The amplitude of oxygen octahedral tilt mode indeed decreases with increasing tolerance factors,leading to a degeneration of ferroelectric polarization.However,the unexpected rigid rotation mode causes the composition-invariable coercive fields.The Curie temperatures decrease linearly with increasing x and tolerance factors.The variable-temperature dielectric constant confirms first-order improper ferroelectric transitions in Ca_(3)Ti_(2)O_(7)-based ceramics.The results of variable temperature Xray diffraction reveal the coexistence of two-phases below Curie temperature.The present work confidently confirms the first-order improper ferroelectric transition in Ca_(3)Ti_(2)O_(7)-based ceramics by combining results of variable-temperature dielectric response and in-situ X-ray powder diffraction.展开更多
Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are...Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are confirmed observationally and some remain elusive. Here we bring together from literature assertions about an excited resonance system in terms of the Green's function and temporal convolution. We raise caveats against taking the face values of the oscillational motion which have been "masqueraded" by the convolution, necessitating deconvolution for retrieving the excitation function which reflects the true variability. Lastly we exemplify successful applications of the deconvolution in estimating resonance complex frequencies.展开更多
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigate...The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.展开更多
An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model i...An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity.展开更多
Wind energy is one of the most promising and renewable energy sources;however,owing to the limitations of device structures,collecting low-speed wind energy by triboelectric nanogenerators(TENGs)is still a huge challe...Wind energy is one of the most promising and renewable energy sources;however,owing to the limitations of device structures,collecting low-speed wind energy by triboelectric nanogenerators(TENGs)is still a huge challenge.To solve this problem,an ultra-durable and highly efficient windmill-like hybrid nanogenerator(W-HNG)is developed.Herein,the W-HNG composes coupled TENG and electromagnetic generator(EMG)and adopts a rotational contact-separation mode.This unique design efficiently avoids the wear of friction materials and ensures a prolonged service life.Moreover,the generator group is separated from the wind-driven part,which successfully prevents rotation resistance induced by the friction between rotor and stator in the conventional structures,and realizes low-speed wind energy harvesting.Additionally,the output characteristics of TENG can be complementary to the different performance advantages of EMG to achieve a satisfactory power production.The device is successfully driven when the wind speed is 1.8 m s−1,and the output power of TENG and EMG can achieve 0.95 and 3.7 mW,respectively.After power management,the W-HNG has been successfully applied as a power source for electronic devices.This work provides a simple,reliable,and durable device for improved performance toward large-scale low-speed breeze energy harvesting.展开更多
The spectral characteristics of air pollution gas sulfur dioxide and hydrogen sulfide has been studied experimentally and theo-retically in the range of 0.2-2.6 THz. The gases absorption spectra of sulfur dioxide and ...The spectral characteristics of air pollution gas sulfur dioxide and hydrogen sulfide has been studied experimentally and theo-retically in the range of 0.2-2.6 THz. The gases absorption spectra of sulfur dioxide and hydrogen sulfide, as measured by terahertz Time-Domain Spectroscopy (THz-TDS) technique, show equi-spaced absorption peaks. The peak intervals are varied for different gas and may relate with the molecule structures and rotation modes. We have calculated the intervals of rotational transition frequency according to the gases molecule structure and the rotational modes. The results are consistent with experimental results which confirm the suggestion that the absorption is coming from the molecular rotational transition. The study suggests a technique to detect air pollutants by THz-TDS and the rotational modes of gas molecules.展开更多
基金financially supported by the National Natural Science Foundation of China under Grant Nos.51772266 and 51790493the National Key R&D Program of China under Grant No.2016YFA0300101.
文摘Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition through dielectric characterization.According to the previous theoretical design rule,the Curie temperature can be suppressed by increasing the tolerance factor.So,in the present work,high-quality Ca_(3-x)LaxTi_(2-x)Al_(x)O_(7)(x=0.0,0.1,0.2,0.3)ceramics with increased tolerance factors were successfully prepared.The amplitude of oxygen octahedral tilt mode indeed decreases with increasing tolerance factors,leading to a degeneration of ferroelectric polarization.However,the unexpected rigid rotation mode causes the composition-invariable coercive fields.The Curie temperatures decrease linearly with increasing x and tolerance factors.The variable-temperature dielectric constant confirms first-order improper ferroelectric transitions in Ca_(3)Ti_(2)O_(7)-based ceramics.The results of variable temperature Xray diffraction reveal the coexistence of two-phases below Curie temperature.The present work confidently confirms the first-order improper ferroelectric transition in Ca_(3)Ti_(2)O_(7)-based ceramics by combining results of variable-temperature dielectric response and in-situ X-ray powder diffraction.
基金supported by the Taiwan Ministry of Science and Technology via grant#104-2116-M-001-006
文摘Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are confirmed observationally and some remain elusive. Here we bring together from literature assertions about an excited resonance system in terms of the Green's function and temporal convolution. We raise caveats against taking the face values of the oscillational motion which have been "masqueraded" by the convolution, necessitating deconvolution for retrieving the excitation function which reflects the true variability. Lastly we exemplify successful applications of the deconvolution in estimating resonance complex frequencies.
基金supported by National Natural Science Foundation of China(51576174)
文摘The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.
文摘An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity.
基金The authors gratefully acknowledge the financial support from the Natural Science Foundation of Chongqing(Grant No.cstc2017jcyjAX0307)the Fundamental Research Funds for the Central Universities(Grant Nos.CYFH201821,2020CDCGJ005,2018CDQYWL0046,2019CDXZWL001)the National Natural Science Foundation of China(Grant No.51402112).
文摘Wind energy is one of the most promising and renewable energy sources;however,owing to the limitations of device structures,collecting low-speed wind energy by triboelectric nanogenerators(TENGs)is still a huge challenge.To solve this problem,an ultra-durable and highly efficient windmill-like hybrid nanogenerator(W-HNG)is developed.Herein,the W-HNG composes coupled TENG and electromagnetic generator(EMG)and adopts a rotational contact-separation mode.This unique design efficiently avoids the wear of friction materials and ensures a prolonged service life.Moreover,the generator group is separated from the wind-driven part,which successfully prevents rotation resistance induced by the friction between rotor and stator in the conventional structures,and realizes low-speed wind energy harvesting.Additionally,the output characteristics of TENG can be complementary to the different performance advantages of EMG to achieve a satisfactory power production.The device is successfully driven when the wind speed is 1.8 m s−1,and the output power of TENG and EMG can achieve 0.95 and 3.7 mW,respectively.After power management,the W-HNG has been successfully applied as a power source for electronic devices.This work provides a simple,reliable,and durable device for improved performance toward large-scale low-speed breeze energy harvesting.
基金supported by the Science and Technology Program of Beijing Educational Committee (Grant No. KM200910028005)the Natural Science Foundation of Beijing (Grant No. 4102016)
文摘The spectral characteristics of air pollution gas sulfur dioxide and hydrogen sulfide has been studied experimentally and theo-retically in the range of 0.2-2.6 THz. The gases absorption spectra of sulfur dioxide and hydrogen sulfide, as measured by terahertz Time-Domain Spectroscopy (THz-TDS) technique, show equi-spaced absorption peaks. The peak intervals are varied for different gas and may relate with the molecule structures and rotation modes. We have calculated the intervals of rotational transition frequency according to the gases molecule structure and the rotational modes. The results are consistent with experimental results which confirm the suggestion that the absorption is coming from the molecular rotational transition. The study suggests a technique to detect air pollutants by THz-TDS and the rotational modes of gas molecules.