The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, th...The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.展开更多
In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of ...In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.展开更多
The increased velocity for the inner moon Phobos at Mars is calculated, assuming a modified gravity law with distributed mass. The motion of the moon is assumed to be balanced by the "close-force". The results from ...The increased velocity for the inner moon Phobos at Mars is calculated, assuming a modified gravity law with distributed mass. The motion of the moon is assumed to be balanced by the "close-force". The results from Stroberg, for planets in noncircular orbits, in conjunction with assuming a density, admit a balance equation for the rotation in a continuum flow. From this, explicit expressions for a velocity field and a so called Le-density are given. These are exploited to model distributed mass and formations, exemplified with a large asteroid, 2 Pallas, in the asteroid belt, bounds for the L-frequency, the formation of Mercury and distances between planets.展开更多
Cable-type welding wire(CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a...Cable-type welding wire(CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were observed by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5times to 0.3times of the CWW diameter.展开更多
The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragme...The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragments of CO (v ≤ 5), HC1 (v ≤ 6), and C2H2 were observed and two photodissociation channels, the C-C1 fission channel and the HC1 elimina- tion channel have been identified. The vibrational and rotational state distributions of the photofragments CO and HC1 have been acquired by analyzing their fully rotationally resolved v→ v- 1 rovibrational progressions in the emission spectra, from which it has been firmly established that the mechanism involves production of HC1 via the four-center molecular elimination of CH2CHCOC1 after its internal conversion from the S1 state to the So state. In addition to the dominant C--C1 bond fission along the excited S1 state, the S1→S0 internal conversion has also been found to play an important role in the gas phase photolysis of CH2CHCOC1 as manifested by the considerable yield of HC1.展开更多
文摘The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.
基金supported by Major military logistics research pro-jects(AWS13Z006)National Key Research and Development program of China(2017YFC0806404).
文摘In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.
文摘The increased velocity for the inner moon Phobos at Mars is calculated, assuming a modified gravity law with distributed mass. The motion of the moon is assumed to be balanced by the "close-force". The results from Stroberg, for planets in noncircular orbits, in conjunction with assuming a density, admit a balance equation for the rotation in a continuum flow. From this, explicit expressions for a velocity field and a so called Le-density are given. These are exploited to model distributed mass and formations, exemplified with a large asteroid, 2 Pallas, in the asteroid belt, bounds for the L-frequency, the formation of Mercury and distances between planets.
基金Item Sponsored by National Natural Science Foundation of China(51275224,51575250,51505200)Prospective Joint Research Project of Jiangsu Province of China(BY2015065-06)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Cable-type welding wire(CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were observed by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5times to 0.3times of the CWW diameter.
基金supported by the National Natural Science Foundation of China (20733005 &20973179)
文摘The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragments of CO (v ≤ 5), HC1 (v ≤ 6), and C2H2 were observed and two photodissociation channels, the C-C1 fission channel and the HC1 elimina- tion channel have been identified. The vibrational and rotational state distributions of the photofragments CO and HC1 have been acquired by analyzing their fully rotationally resolved v→ v- 1 rovibrational progressions in the emission spectra, from which it has been firmly established that the mechanism involves production of HC1 via the four-center molecular elimination of CH2CHCOC1 after its internal conversion from the S1 state to the So state. In addition to the dominant C--C1 bond fission along the excited S1 state, the S1→S0 internal conversion has also been found to play an important role in the gas phase photolysis of CH2CHCOC1 as manifested by the considerable yield of HC1.