期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Type Synthesis of Two-Degrees-of-Freedom Rotational Parallel Mechanism with Two Continuous Rotational Axes 被引量:19
1
作者 XU Yundou ZHANG Dongsheng +2 位作者 WANG Min YAO Jiantao ZHAO Yongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期694-702,共9页
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration... The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained. 展开更多
关键词 type synthesis continuous rotational axes two rotational degrees of freedom parallel mechanism constraint force
下载PDF
Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties 被引量:1
2
作者 R.Rostami M.Mohammadimehr +1 位作者 M.Ghannad A.Jalali 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期97-108,共12页
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper... In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery. 展开更多
关键词 forced vibration analysis Nano-composite rotating pressurized microbeam Carbon nanotubes Modify couple stress theory Temperature-variable material properties
下载PDF
Balance Mechanism Design of Single Cylinder Engine Based on Continuous Mass Distribution of Connecting Rod 被引量:3
3
作者 杨陈 郝志勇 郑光泰 《Transactions of Tianjin University》 EI CAS 2009年第4期255-259,共5页
For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and... For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance. 展开更多
关键词 multibody dynamics reciprocating inertial force rotating inertial force primary balance shaft
下载PDF
Effect of an external magnetic field on improved electroslag remelting cladding process 被引量:1
4
作者 Zhiwen Hou Yanwu Dong +3 位作者 Zhouhua Jiang Zhihao Hu Limeng Liu Kunjie Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1511-1521,共11页
Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process usi... Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls.The improved ESRC comprises a conventional ESRC circuit and an external coil circuit.A comprehensive 3D model,including multi-physics fields,is proposed to study the effect of external magnetic fields on the multi-phys-ics fields and interface temperature uniformity.The simulated results demonstrate that the nonuniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC.As for the improved ESRC,the magnetic flux density(B_(coil))along the z-axis is pro-duced by an anticlockwise current of the external coil.The rotating Lorentz force is generated from the interaction between the radial current and axial B_(coil).Therefore,the slag pool flows clockwise,which enhances circumferential effective thermal conductivity.As a result,the uniformity of the temperature field and interface temperature improve.In addition,the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results,which verifies the accuracy of the improved ESRC model.Therefore,an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality. 展开更多
关键词 improved ESRC external magnetic field multi-physics fields rotating Lorentz force interface temperature uniformity
下载PDF
Numerical Investigation of Submarine Hydrodynamics and Flow Field in Steady Turn 被引量:4
5
作者 曹留帅 朱军 万文彬 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期57-68,共12页
This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordina... This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull. 展开更多
关键词 submarine hydrodynamics flow field rotating coordinate system Coriolis and centrifugal force
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部