The composite polymer electrolyte has been obtained via incorporating LiCUST-701(a new metal–organic rotaxane framework modified by Li+)into poly(ethylene oxide)(PEO)matrix and give a high ionic conductivity of 4.02&...The composite polymer electrolyte has been obtained via incorporating LiCUST-701(a new metal–organic rotaxane framework modified by Li+)into poly(ethylene oxide)(PEO)matrix and give a high ionic conductivity of 4.02×10^(−4)S/cm at 60℃.DFT calculations were used to visualize the possible diffusion pathway of Li+.The all-solid-state cell assembled with LiFePO_(4),composite polymer electrolyte and lithium metal foil delivered with excellent cycling capability and stability even under high current densities.展开更多
As a promising imaging technology,the low sensitivity of fluorine-19 magnetic resonance imaging(^(19)F MRI)severely hinders its biomedical applications.Herein,we have developed an unprecedented rotaxanebased strategy ...As a promising imaging technology,the low sensitivity of fluorine-19 magnetic resonance imaging(^(19)F MRI)severely hinders its biomedical applications.Herein,we have developed an unprecedented rotaxanebased strategy to improve the sensitivity of^(19)F MRI agents.By threading the fluorinated macrocycle into2-blade pinwheel[2]rotaxanes,the^(19)F longitudinal relaxation rate R1was dramatically increased,resulting in a significant^(19)F MRI signal intensity enhancement of up to 79%.Through comparative molecular dynamics studies using a series of solution and solid-state^(1)H/^(19)F nuclear magnetic resonance(^(1)H/^(19)F NMR)and molecular dynamics simulations,it was found that the formation of mechanical bonds dramatically restricts the motion of the wheel fluorines and thus increasing the R1for higher^(19)F MRI sensitivity.Besides a novel strategy for improving^(19)F MRI sensitivity,this study has established^(19)F NMR/MRI as a valuable technology for monitoring the molecular dynamics of rotaxanes,which may shed new light on high-performance^(19)F MRI agents and molecular devices.展开更多
Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the f...Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the facile and efficient synthesis of both sequence isomers of hetero[3]rotaxanes.More importantly,taking advantage of the chirality retention along with the wheel-assembling process,corresponding sequence isomers of chiral AIEgenfunctionalized hetero[3]rotaxanes were further precisely synthesized.Impressively,the resultant hetero[3]rotaxanes revealed remarkable sequencedependent aggregation-induced emission(AIE)behavior and circularly polarized luminescence performance with large dissymmetry factors up to 0.012,highlighting the great power of the newly coined sequence engineering concept in developing novel AIE-active chiroptical materials.This proof-ofconcept study lays the foundation for investigation of the structure-property relationships of heterorotaxanes that can further direct the rational design and precise synthesis of sequence-defined heterorotaxanes with desirable properties for practical applications.展开更多
We have developed a rotaxane-based mechanophore system that is capable of breaking a mechanical bond and releasing small molecules via force-triggered rotaxane disassembly.In this design,a cyclobutane mechanophore was...We have developed a rotaxane-based mechanophore system that is capable of breaking a mechanical bond and releasing small molecules via force-triggered rotaxane disassembly.In this design,a cyclobutane mechanophore was fused to the ring component of a rotaxane,constructed through a template-mediated synthesis in high yields.Upon opening the ring component,the rotaxane disassembled to release the axle molecule.We successfully demonstrated and quantified the force-triggered release of the axlemolecule in both solution and solid-state samples.展开更多
Here we use nor-seco-cucurbit[10]uril(ns-CB[10]) based ternary complexation to construct [5]rotaxane,linear supramolecular dynamic rotaxane polymers and cubic 3D supramolecular organic framework.A [5]rotaxane is const...Here we use nor-seco-cucurbit[10]uril(ns-CB[10]) based ternary complexation to construct [5]rotaxane,linear supramolecular dynamic rotaxane polymers and cubic 3D supramolecular organic framework.A [5]rotaxane is constructed by ns-CB[10], TMe CB[6] and short linear derivatives of 4,4'-bipyridinium(M2). ns-CB[10], CB[7] and long linear derivatives of 4,4'-bipyridinium(M3) self-assemble into a linear supramolecular dynamic rotaxane polymer. ns-CB[10] and tetracationic tetrahedral monomer selfassemble and form a three-dimensional supramolecular organic framework. The above results demonstrate that ns-CB[10]-based ternary complexation is a versatile platform to build various supramolecular systems.展开更多
Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cell...Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cellular ion homeostasis.Based on the structural advantages of molecular rotaxanes,we herein show that two rotaxane-based transporters[2]R and[3]R induce coupled K^(+)/Cl^(-) channel transport by introducing Cl^(-) recognition sites in the thread and K^(+) binding group in the wheel,respectively.The welldesigned molecular structures allow the insertion of unimolecular rotaxanes into the lipid bilayer,thus achieving effective ion transport by means of thermodynamically controlled movement and driven by the difference in ion concentration inside and outside the vesicles.In addition,the use of a three-component rotaxane can accelerate ion transport through a cooperative shuttlerelay mechanism in which two wheels move along the thread in the lipid membrane,thereby enabling[3]R to have higher ion transport capacity.This work represents a major advance in the use of rotaxane molecules to accomplish more complex and effective tasks.展开更多
The series of salen-bridged bis-pillar[1]arenes were conveniently prepared by condensation reaction of5,5'-methylenebis(2-hydroxybenzalde hyde)or 5,5'-(propane-2,2-diyl)bis(2-hydroxybenzaldehyde)with mono-amid...The series of salen-bridged bis-pillar[1]arenes were conveniently prepared by condensation reaction of5,5'-methylenebis(2-hydroxybenzalde hyde)or 5,5'-(propane-2,2-diyl)bis(2-hydroxybenzaldehyde)with mono-amido-functionalized pillar[5]arenes containing different terminal aminoalkyl groups in refluxing ethanol.The^1H NMR and 2D-NOESY spectra indicated that the salen-bridged bis-pillar[5]arenes with longer allcylene linker(n=3,4,6)formed the fascinating bis-[1]rotaxanes,while the salenbridged bis-pillar[5]arenes with short hydrazine and ethylenediamino linker(n=0,2)predominately existed in free form.The single crystal structure of the bis-pillar[5]are ne ambiguously indicated that two propylenediamino linker inserted in to two cavities of pillar[5]arene to form a novel bis-[1]rotaxanes.展开更多
A [3]rotaxane I involving two naphtho-21-crown-7 (N21 C7) rings and a dumbbell-shaped component 4 was synthesized. The dumbbell-shape molecule 4 contains one viologen nucleus, two secondary alkyl ammonium sites and ...A [3]rotaxane I involving two naphtho-21-crown-7 (N21 C7) rings and a dumbbell-shaped component 4 was synthesized. The dumbbell-shape molecule 4 contains one viologen nucleus, two secondary alkyl ammonium sites and two phenyl stoppers. After threading the N21C7 ring with the thread-like ammonium guest 3, the copper(l)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition (CuAAC "click" reaction), was performed to connect the pseudorotaxanes with viologen unit 2 and generate 1. Through treating the [3]rotaxane by the base and acid circularly, the two N21 C7 rings can make shuttling motion along the axle. Meanwhile the distance between the electron-deficient viologen unit and the electron-rich naphthol group can be adjusted precisely along with a remarkable intramolecular charge- transfer (CT) behavior.展开更多
A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion...A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.展开更多
The preparation of intelligent-responsive materials with controllable topology structure has long been a significant objective for chemists in the field of materials science. In this paper, we designed and prepared a ...The preparation of intelligent-responsive materials with controllable topology structure has long been a significant objective for chemists in the field of materials science. In this paper, we designed and prepared a linear-cyclic reversible topological structure polymer based on the bistable [1]rotaxane molecular shuttle. A ferrocene-functionalized [1]rotaxane and naphthalimide fluorophore group are introduced into the both ends of the polymer, which exhibit distance-induced photo-electron transfer effect. The structural transformation between linear and cyclic state of polymer is demonstrated by simple acid-base stimuli, accompanying visual fluorescence changes. The transformation process was characterized by 1H NMR spectra and fluorescence spectra. This work provides a novel strategy to construct functionalized polymers with topological structure.展开更多
Four pillar[5]arene based[3]rotaxanes(1-4)involving two 1,4-diethoxypillar[5]arene(DEP5)rings and a dumbbell-shaped component were successfully synthesized.The dumbbell-shape molecules contain one longer bridge,two tr...Four pillar[5]arene based[3]rotaxanes(1-4)involving two 1,4-diethoxypillar[5]arene(DEP5)rings and a dumbbell-shaped component were successfully synthesized.The dumbbell-shape molecules contain one longer bridge,two triazole sites and two multicomponent stoppers.After threading DEP5 rings with linear guests(G1-G4)which contain two benzaldehyde units,the base catalyzed three-component reaction of dimedone,malononitrile and benzaldehyde was performed to construct the stoppers and connected the pseudorotaxanes with stoppers to generate 1-4.The structures of[3]rotaxanes and their self-assembly behaviors were characterized by 1 H NMR,13C NMR,NOESY,HR-ESI-MS,DLS and TEM technologies.We hope that pillar[5]arene based[3]rotaxanes may have potential applications in drug delivery systems and molecular devices.展开更多
Movements in molecular machines are usually diverse and coupled,but some of them are often implicit and hard to be observed in experiments.In the present work,the two-or three-dimensional free-energy landscapes charac...Movements in molecular machines are usually diverse and coupled,but some of them are often implicit and hard to be observed in experiments.In the present work,the two-or three-dimensional free-energy landscapes characterizing the coupled shutthng and other movements of a series of pH-triggered rotaxanes composed of a crown ether and an H-shaped axle with distinct number of phenyl rings(n=1-3)have been explored.The results show that although the calculated free-energy barriers against shutthng in the rotaxanes(n=2 and 3)change slightly,the move-ments coupled with the shutthng vary significantly with the axle length.At high pH,the shutthng in the rotaxane of n=2 is coupled with the isomerization of the wheel,while the shutthng in the one of n=3 is accompanied by both the isomerization and the rotation of the macrocycle.In addition,the crown ether imdenvent greater conlomiational change during shutthng at low pH compared to that at high pH.These results indicate that disentangling the coupled movements is important to reveal the underlying molecular mechanism of the shutthng.展开更多
Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-co...Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-complexation from P1 or P2, whereas, concentration-dependent pseudorotaxane structures were generated by P3 which bearing more flexible side chain. Interestingly, the obtained pseudo[1]rotaxanes exhibited a dynamic fast assembly process upon adding NaBF4, resulting in the formation of Na+-induced pseudorotaxanes.展开更多
Rotaxanes have attracted more and more attentions because of their diverse applications as sensors,catalysts, and functional materials. The construction of highly ordered and discrete multirotaxanes with the well-defi...Rotaxanes have attracted more and more attentions because of their diverse applications as sensors,catalysts, and functional materials. The construction of highly ordered and discrete multirotaxanes with the well-defined structure remains a challenge. Herein, a symmetric [5]rotaxane with zinc porphyrin as core and the neutral platinum-acetylide as the linkage was synthesized with high yield. The [5]rotaxane was well characterized with NMR spectroscopy and MALDI-TOF mass spectrometry. Interestingly, it was found that the [5]rotaxane showed the controllable aggregation behaviours in different solution compositions. For example, in non-polar solution, the [5]rotaxane could self-assemble into the largescaled solid nanospheres while the nanofibers were formed in polar solvent. Further investigation revealed that the [5]rotaxane displayed J-type aggregation in solution driven by p-p interaction. Notably,the similar structure without DPP[5]A formed the irregular morphology at the same condition,suggesting that the existence of rotaxanes endowed the complex with a relative rigid structure to facilitate the formation of the ordered aggregates.展开更多
Several cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes were synthesized through the cucurbit[6]uril-templated azide-alkyne 1,3-dipolar cycloaddition. The intramolecular interaction between the aromatic axle and t...Several cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes were synthesized through the cucurbit[6]uril-templated azide-alkyne 1,3-dipolar cycloaddition. The intramolecular interaction between the aromatic axle and the capping groups of cyclodextrin moieties was investigated by UV-vis, fluorescence,circular dichroism and NMR spectroscopic studies. The rotational kinetic of the wheel around the axle can be manipulated by adjusting the temperature. The capping group apparently slowed down the rotation of the wheel, playing a role of the brake, and lowering the temperature can stop the rotation of the wheel on the NMR timescale.展开更多
Series of azobenzene-bridged pillar[5]arene-based [3]rotaxanes with different alkyl chain length of guest molecules were constructed by threading-endcapping method with alkylenetriazole as axile and tetrahydrochromene...Series of azobenzene-bridged pillar[5]arene-based [3]rotaxanes with different alkyl chain length of guest molecules were constructed by threading-endcapping method with alkylenetriazole as axile and tetrahydrochromene as endcapping group.The encapsulation of pillar[5]arenes were proved by highresolution mass,^(1) H NMR and NOESY spectra.The photo-responsive property were examined by irradiation of the synthesized [3]rotaxanes with 365 nm and blue light LED,which caused trans to cis and cis to trans isomerization,respectively.Irradiation of corresponding model guest compounds without pillar[5]arene encapsulation resulted in near completely trans to cis and cis to trans isomerization,indicating the existence of pillar[5]arenes is the determining factor for the comprised photo isomerization efficiency.展开更多
Two strategies for the design of new pillar[5]arene-based mechanically self-interlocked molecules (MSMs) are reported here. The first strategy is based on the construction of an intermediate pseudo[1]rotaxane followed...Two strategies for the design of new pillar[5]arene-based mechanically self-interlocked molecules (MSMs) are reported here. The first strategy is based on the construction of an intermediate pseudo[1]rotaxane followed by the desired bis-[l]rotaxane. The other one is based on the construction of the desired bis-[1]rotaxane directly via a condensation reaction through host-guest interactions between a mono-functionalized pillar[5]arene and the axle. The newly synthesized bis-[1]rotaxane BR was characterized by ~1H NMR, ^(13)C NMR, 2D NMRs (~1H-^(13)C HSQC,~1H-~1H COSY and NOESY) and LC-ESI-MS,which indicated compound BR displayed an self-interlocked structure in CDCl_3. Surprisingly, the results of SEM, TEM and DLS showed that the compound BR could assemble into spherical nanoparticles in MeOH.展开更多
基金the National Natural Science Foundation of China(Nos.U1973201 and 22271023).
文摘The composite polymer electrolyte has been obtained via incorporating LiCUST-701(a new metal–organic rotaxane framework modified by Li+)into poly(ethylene oxide)(PEO)matrix and give a high ionic conductivity of 4.02×10^(−4)S/cm at 60℃.DFT calculations were used to visualize the possible diffusion pathway of Li+.The all-solid-state cell assembled with LiFePO_(4),composite polymer electrolyte and lithium metal foil delivered with excellent cycling capability and stability even under high current densities.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0540000)the National Key R&D Program of China(No.2018YFA0704000)+2 种基金the National Natural Science Foundation of China(Nos.22327901,22077098,U21A20392,21921004,and 82127802)the Knowledge Innovation Program of WuhanBasic Research(No.2022020801010137)support from the Youth Innovation Promotion Association and the Young Top-notch Talent Cultivation Program。
文摘As a promising imaging technology,the low sensitivity of fluorine-19 magnetic resonance imaging(^(19)F MRI)severely hinders its biomedical applications.Herein,we have developed an unprecedented rotaxanebased strategy to improve the sensitivity of^(19)F MRI agents.By threading the fluorinated macrocycle into2-blade pinwheel[2]rotaxanes,the^(19)F longitudinal relaxation rate R1was dramatically increased,resulting in a significant^(19)F MRI signal intensity enhancement of up to 79%.Through comparative molecular dynamics studies using a series of solution and solid-state^(1)H/^(19)F nuclear magnetic resonance(^(1)H/^(19)F NMR)and molecular dynamics simulations,it was found that the formation of mechanical bonds dramatically restricts the motion of the wheel fluorines and thus increasing the R1for higher^(19)F MRI sensitivity.Besides a novel strategy for improving^(19)F MRI sensitivity,this study has established^(19)F NMR/MRI as a valuable technology for monitoring the molecular dynamics of rotaxanes,which may shed new light on high-performance^(19)F MRI agents and molecular devices.
基金support by the National Natural Science Foundation of China(grant nos.92356307 and 22001073)the Natural Science Foundation of Shanghai(grant no.23ZR1419600)+3 种基金support by the National Natural Science Foundation of China(grant no.92056203)the Science and Technology Commission of Shanghai Municipality(grant no.21520710200)the National Key R&D Program of China(grant no.2021YFA1501600)support by the National Natural Science Foundation of China(grant no.22201077).
文摘Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the facile and efficient synthesis of both sequence isomers of hetero[3]rotaxanes.More importantly,taking advantage of the chirality retention along with the wheel-assembling process,corresponding sequence isomers of chiral AIEgenfunctionalized hetero[3]rotaxanes were further precisely synthesized.Impressively,the resultant hetero[3]rotaxanes revealed remarkable sequencedependent aggregation-induced emission(AIE)behavior and circularly polarized luminescence performance with large dissymmetry factors up to 0.012,highlighting the great power of the newly coined sequence engineering concept in developing novel AIE-active chiroptical materials.This proof-ofconcept study lays the foundation for investigation of the structure-property relationships of heterorotaxanes that can further direct the rational design and precise synthesis of sequence-defined heterorotaxanes with desirable properties for practical applications.
基金This work was supported by the U.S.Army Research Office(grant no.W911NF-15-1-0525)J.Y.was partly supported by a Stanford Graduate Fellowship.Single-crystal X-ray diffraction experiments were performed at beamline 12.2.1 at the advanced light source(ALS).The ALS is supported by the Director,Office of Science,Office of Basic Energy Science,of the U.S.Department of Energy(contract no.DE-AC02-05CH11231).
文摘We have developed a rotaxane-based mechanophore system that is capable of breaking a mechanical bond and releasing small molecules via force-triggered rotaxane disassembly.In this design,a cyclobutane mechanophore was fused to the ring component of a rotaxane,constructed through a template-mediated synthesis in high yields.Upon opening the ring component,the rotaxane disassembled to release the axle molecule.We successfully demonstrated and quantified the force-triggered release of the axlemolecule in both solution and solid-state samples.
基金supports from the National Natural Science Foundation of China(Nos.21890732,21890730 and 21921003)。
文摘Here we use nor-seco-cucurbit[10]uril(ns-CB[10]) based ternary complexation to construct [5]rotaxane,linear supramolecular dynamic rotaxane polymers and cubic 3D supramolecular organic framework.A [5]rotaxane is constructed by ns-CB[10], TMe CB[6] and short linear derivatives of 4,4'-bipyridinium(M2). ns-CB[10], CB[7] and long linear derivatives of 4,4'-bipyridinium(M3) self-assemble into a linear supramolecular dynamic rotaxane polymer. ns-CB[10] and tetracationic tetrahedral monomer selfassemble and form a three-dimensional supramolecular organic framework. The above results demonstrate that ns-CB[10]-based ternary complexation is a versatile platform to build various supramolecular systems.
基金supported by the National Natural Science Foundation of China(22171085)the Shanghai Science Technology Communication(21ZR1415500)Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,Grant 2021 Sci&Tech 03-28)。
文摘Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cellular ion homeostasis.Based on the structural advantages of molecular rotaxanes,we herein show that two rotaxane-based transporters[2]R and[3]R induce coupled K^(+)/Cl^(-) channel transport by introducing Cl^(-) recognition sites in the thread and K^(+) binding group in the wheel,respectively.The welldesigned molecular structures allow the insertion of unimolecular rotaxanes into the lipid bilayer,thus achieving effective ion transport by means of thermodynamically controlled movement and driven by the difference in ion concentration inside and outside the vesicles.In addition,the use of a three-component rotaxane can accelerate ion transport through a cooperative shuttlerelay mechanism in which two wheels move along the thread in the lipid membrane,thereby enabling[3]R to have higher ion transport capacity.This work represents a major advance in the use of rotaxane molecules to accomplish more complex and effective tasks.
基金financial support by the National Natural Science Foundation of China(Nos.21372192,21871227)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The series of salen-bridged bis-pillar[1]arenes were conveniently prepared by condensation reaction of5,5'-methylenebis(2-hydroxybenzalde hyde)or 5,5'-(propane-2,2-diyl)bis(2-hydroxybenzaldehyde)with mono-amido-functionalized pillar[5]arenes containing different terminal aminoalkyl groups in refluxing ethanol.The^1H NMR and 2D-NOESY spectra indicated that the salen-bridged bis-pillar[5]arenes with longer allcylene linker(n=3,4,6)formed the fascinating bis-[1]rotaxanes,while the salenbridged bis-pillar[5]arenes with short hydrazine and ethylenediamino linker(n=0,2)predominately existed in free form.The single crystal structure of the bis-pillar[5]are ne ambiguously indicated that two propylenediamino linker inserted in to two cavities of pillar[5]arene to form a novel bis-[1]rotaxanes.
基金the National Basic Research Program of China(973 Program,No.2011CB932500)the National Natural Science Foundation of China(Nos.20932004 and 20972077) for financial support
文摘A [3]rotaxane I involving two naphtho-21-crown-7 (N21 C7) rings and a dumbbell-shaped component 4 was synthesized. The dumbbell-shape molecule 4 contains one viologen nucleus, two secondary alkyl ammonium sites and two phenyl stoppers. After threading the N21C7 ring with the thread-like ammonium guest 3, the copper(l)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition (CuAAC "click" reaction), was performed to connect the pseudorotaxanes with viologen unit 2 and generate 1. Through treating the [3]rotaxane by the base and acid circularly, the two N21 C7 rings can make shuttling motion along the axle. Meanwhile the distance between the electron-deficient viologen unit and the electron-rich naphthol group can be adjusted precisely along with a remarkable intramolecular charge- transfer (CT) behavior.
基金supported by the National Natural Science Foundation of China(Nos.22025503,21790361 and 21871084)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+3 种基金the Fundamental Research Funds for the Central Universitiesthe Program of Introducing Talents of Discipline to Universities(No.B16017)the Shanghai Science and Technology Committee(No.17520750100)funding from China Postdoctoral Science Foundation funded project(No.J100–5R-20130)。
文摘A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.
基金supported by the National Natural Science Foundation of China (Nos. 21901063, U20041101)Young Talents Personnel Fund of Henan Agricultural University (No. 30500604)。
文摘The preparation of intelligent-responsive materials with controllable topology structure has long been a significant objective for chemists in the field of materials science. In this paper, we designed and prepared a linear-cyclic reversible topological structure polymer based on the bistable [1]rotaxane molecular shuttle. A ferrocene-functionalized [1]rotaxane and naphthalimide fluorophore group are introduced into the both ends of the polymer, which exhibit distance-induced photo-electron transfer effect. The structural transformation between linear and cyclic state of polymer is demonstrated by simple acid-base stimuli, accompanying visual fluorescence changes. The transformation process was characterized by 1H NMR spectra and fluorescence spectra. This work provides a novel strategy to construct functionalized polymers with topological structure.
基金supported by the National Natural Science Foundation of China(Nos.21871227,21801139)Natural Science Foundation of Jiangsu Province(No.BK20180942)Natural Science Foundation of Nantong University for High-Level Talent(No.03083004)。
文摘Four pillar[5]arene based[3]rotaxanes(1-4)involving two 1,4-diethoxypillar[5]arene(DEP5)rings and a dumbbell-shaped component were successfully synthesized.The dumbbell-shape molecules contain one longer bridge,two triazole sites and two multicomponent stoppers.After threading DEP5 rings with linear guests(G1-G4)which contain two benzaldehyde units,the base catalyzed three-component reaction of dimedone,malononitrile and benzaldehyde was performed to construct the stoppers and connected the pseudorotaxanes with stoppers to generate 1-4.The structures of[3]rotaxanes and their self-assembly behaviors were characterized by 1 H NMR,13C NMR,NOESY,HR-ESI-MS,DLS and TEM technologies.We hope that pillar[5]arene based[3]rotaxanes may have potential applications in drug delivery systems and molecular devices.
基金Supported by the National Natural Science Foundation of China(No.21773125)the Fundamental Research Funds for the Central Universities,China(No.63191743)+1 种基金the Natural Science Foundation of Tianjin,China(No.18JCYBJC2O5OO)the China Postdoctoral Science Foundation(No.bs6619012).
文摘Movements in molecular machines are usually diverse and coupled,but some of them are often implicit and hard to be observed in experiments.In the present work,the two-or three-dimensional free-energy landscapes characterizing the coupled shutthng and other movements of a series of pH-triggered rotaxanes composed of a crown ether and an H-shaped axle with distinct number of phenyl rings(n=1-3)have been explored.The results show that although the calculated free-energy barriers against shutthng in the rotaxanes(n=2 and 3)change slightly,the move-ments coupled with the shutthng vary significantly with the axle length.At high pH,the shutthng in the rotaxane of n=2 is coupled with the isomerization of the wheel,while the shutthng in the one of n=3 is accompanied by both the isomerization and the rotation of the macrocycle.In addition,the crown ether imdenvent greater conlomiational change during shutthng at low pH compared to that at high pH.These results indicate that disentangling the coupled movements is important to reveal the underlying molecular mechanism of the shutthng.
基金the financial support from the National Natural Science Foundation of China(Nos.21472089,21572101)the National Natural Science Foundation of Jiangsu(No.BK20140595)
文摘Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-complexation from P1 or P2, whereas, concentration-dependent pseudorotaxane structures were generated by P3 which bearing more flexible side chain. Interestingly, the obtained pseudo[1]rotaxanes exhibited a dynamic fast assembly process upon adding NaBF4, resulting in the formation of Na+-induced pseudorotaxanes.
基金financial support from the National Natural Science Foundation of China (No. 21572066)STCSM (No. 16XD1401000)Program for Changjiang Scholars and Innovative Research Team in University
文摘Rotaxanes have attracted more and more attentions because of their diverse applications as sensors,catalysts, and functional materials. The construction of highly ordered and discrete multirotaxanes with the well-defined structure remains a challenge. Herein, a symmetric [5]rotaxane with zinc porphyrin as core and the neutral platinum-acetylide as the linkage was synthesized with high yield. The [5]rotaxane was well characterized with NMR spectroscopy and MALDI-TOF mass spectrometry. Interestingly, it was found that the [5]rotaxane showed the controllable aggregation behaviours in different solution compositions. For example, in non-polar solution, the [5]rotaxane could self-assemble into the largescaled solid nanospheres while the nanofibers were formed in polar solvent. Further investigation revealed that the [5]rotaxane displayed J-type aggregation in solution driven by p-p interaction. Notably,the similar structure without DPP[5]A formed the irregular morphology at the same condition,suggesting that the existence of rotaxanes endowed the complex with a relative rigid structure to facilitate the formation of the ordered aggregates.
基金support of this work by the National Natural Science Foundation of China (Nos. 21871194, 21572142, 21372165, 21402129 and 21402110)National Key Research and Development Program of China(No. 2017YFA0505903)+1 种基金Science & Technology Department of Sichuan Province(No. 2017SZ0021)Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan university
文摘Several cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes were synthesized through the cucurbit[6]uril-templated azide-alkyne 1,3-dipolar cycloaddition. The intramolecular interaction between the aromatic axle and the capping groups of cyclodextrin moieties was investigated by UV-vis, fluorescence,circular dichroism and NMR spectroscopic studies. The rotational kinetic of the wheel around the axle can be manipulated by adjusting the temperature. The capping group apparently slowed down the rotation of the wheel, playing a role of the brake, and lowering the temperature can stop the rotation of the wheel on the NMR timescale.
基金supported by the National Natural Science Foundation of China(Nos.21372192,21871227)the Natural Science Foundation of Jiangsu Province(No.BK20190905)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Series of azobenzene-bridged pillar[5]arene-based [3]rotaxanes with different alkyl chain length of guest molecules were constructed by threading-endcapping method with alkylenetriazole as axile and tetrahydrochromene as endcapping group.The encapsulation of pillar[5]arenes were proved by highresolution mass,^(1) H NMR and NOESY spectra.The photo-responsive property were examined by irradiation of the synthesized [3]rotaxanes with 365 nm and blue light LED,which caused trans to cis and cis to trans isomerization,respectively.Irradiation of corresponding model guest compounds without pillar[5]arene encapsulation resulted in near completely trans to cis and cis to trans isomerization,indicating the existence of pillar[5]arenes is the determining factor for the comprised photo isomerization efficiency.
文摘Two strategies for the design of new pillar[5]arene-based mechanically self-interlocked molecules (MSMs) are reported here. The first strategy is based on the construction of an intermediate pseudo[1]rotaxane followed by the desired bis-[l]rotaxane. The other one is based on the construction of the desired bis-[1]rotaxane directly via a condensation reaction through host-guest interactions between a mono-functionalized pillar[5]arene and the axle. The newly synthesized bis-[1]rotaxane BR was characterized by ~1H NMR, ^(13)C NMR, 2D NMRs (~1H-^(13)C HSQC,~1H-~1H COSY and NOESY) and LC-ESI-MS,which indicated compound BR displayed an self-interlocked structure in CDCl_3. Surprisingly, the results of SEM, TEM and DLS showed that the compound BR could assemble into spherical nanoparticles in MeOH.