In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displa...In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displacement and volume of injection allocation phase matching. But the technology in pump class load application speed range is limited, there is still a reflux valve control blind area," turn off undead" problem. " One-for-several" rotor frequency Technique in water injection station application, solved the control blind area problem, the full realization of the variable frequency close return voltage injection, at the same time, the successful implementation of the slip power efficient feedback. Stable water injection pressure of the system, and the electric energy is saved, satisfy the oilfield high efficiency, fine water needs, has a high application value.展开更多
A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose...A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.展开更多
文摘In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displacement and volume of injection allocation phase matching. But the technology in pump class load application speed range is limited, there is still a reflux valve control blind area," turn off undead" problem. " One-for-several" rotor frequency Technique in water injection station application, solved the control blind area problem, the full realization of the variable frequency close return voltage injection, at the same time, the successful implementation of the slip power efficient feedback. Stable water injection pressure of the system, and the electric energy is saved, satisfy the oilfield high efficiency, fine water needs, has a high application value.
基金the support of the Fund of Key Laboratory of Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.