Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing syste...Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.展开更多
The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically. The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is an instantane...The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically. The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is an instantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysis showed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation no longer exists. For the interest of engineering applications, we investigated various rotating speeds, perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on the contact surface were also considered. The graphical results can be used for the design of rotating machines.展开更多
The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration. The n...The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration. The nonlinear vibrational response of a rubbing rotor was analyzed using numerical integral, spectroscopic analysis and Poince mapping method, which made it possible to have better understanding of the vibrational characteristics of partial rubbing and complete circular rubbing rotors. The numerical results reveal the response of torsional vibration mainly takes a form of superchronous motion, and its frequency decreases as the rotational speed increases when partial rubbing occurs, and the response of torsional vibration is synchronous when complete circular rubbing occurs. The comparison of the dynamics of rubbing rotors with and without the interaction between bending and torsional vibrations shows the interaction between bending and torsional vibrations advances the rotational speed, at which the response of bending vibration changes from a synchronous motion into a quasi periodic motion, and the interaction between bending and torsional vibrations reduces stability of the rubbing rotor.展开更多
Considering gyroscopic effects caused by rotational speed,torsional vibration as well as coupling effects among inner rotor,out rotor and casing,a dynamic model of the dual-rotor-casing system is established using fin...Considering gyroscopic effects caused by rotational speed,torsional vibration as well as coupling effects among inner rotor,out rotor and casing,a dynamic model of the dual-rotor-casing system is established using finite element(FE)method.By comparing the natural characteristics obtained from MATLAB and ANSYS,the developed model is verified.Then rubbing-induced vibration responses in dual-rotor-casing system are analyzed.The effects of rotational speed and speed ratio on rubbing vibration responses of the system are discussed.Results show that different combined frequency components will appear in the spectrum except two unbalanced excitation frequencies and their multiple frequency components,and these frequencies can be used as the dual-rotor aero-engine rubbing failure diagnosis frequencies when rubbing occurs.Besides,the amplitude of torsional vibration is larger than that of lateral vibration under the same working condition,and speed ratio has a great impact on the periodicity of the system rubbing-induced motion trajectory.The amplitude of rubbing-induced responses under counter-rotation is less than that under co-rotation with the same parameters.展开更多
With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-t...With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-to-stator clearance are analyzed, which prove that there isstrong impact on coupled lateral and torsion vibration behavior. Smaller the clearance is, morecomplex the motion of rotor is. When the clearance is larger, the frequency spectrum of rub-impactrotor is mainly composed of 1/2X, 1/3X and 1/4X components. With the decrease of clearance,quasi-periodic and chaotic motions will be present. Under different clearances, the bifurcationdiagrams of lateral and torsion vibrations can be divided into rub-free zone, rub-light zone andthree complex motion zones in which the motion trend of lateral vibration is similar to that of thetorsion vibration. Compared with the lateral vibration, the torsion vibration is of more motionforms and more abundant frequency components in amplitude spectrum.展开更多
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, ar...An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.展开更多
The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of ...The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects.展开更多
Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate r...Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate rubbing responses of unbalanced rotor-bladed disk-casing system are studied under different operational speeds.In addition,influences of both plastic deformation of blade and casing failure are analyzed.The results show that there exist some multiple even fractional frequencies in the transient and steady vibration responses of unbalanced rotor.Besides,one nodal diameter vibration of bladed disk coupling with the lateral vibration of the shaft as well as the first order bending vibration of blade can be excited under low operational speed,while the first order bending vibration of blade coupling with the lateral vibration of disk-shaft is easily excited under high operational speed.During rubbing process,three distinct contact states can be observed:broken blade-casing contact,broken blade-blade component-casing contact and broken blade-casing contact/blade component-casing contact/blade selfcontact.It is worth noting that the third contact state is related to the operational speed.With the increase of operational speed,self-contact in the blade may occur.展开更多
Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by num...Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.展开更多
The phase characteristic of a disk rubbing with a ring supported elastically is investigated and used to explain the mechanism of stiffness increase phenomenon. As long as the rubbing is maintained, the averaged phase...The phase characteristic of a disk rubbing with a ring supported elastically is investigated and used to explain the mechanism of stiffness increase phenomenon. As long as the rubbing is maintained, the averaged phase difference between the disk and the rotating mass on the disk is defi- nitely less than π/2. When the rubbing finishes, the phase difference quickly approaches to 7r. This behavior is inde- pendent of the physics parameters of the rubbing system. The theoretical results are qualitatively verified with experiments.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026000)
文摘Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
基金the China Scholarship Council andpartially by the Fund of the Chinese Nuclear Industr
文摘The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically. The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is an instantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysis showed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation no longer exists. For the interest of engineering applications, we investigated various rotating speeds, perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on the contact surface were also considered. The graphical results can be used for the design of rotating machines.
文摘The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration. The nonlinear vibrational response of a rubbing rotor was analyzed using numerical integral, spectroscopic analysis and Poince mapping method, which made it possible to have better understanding of the vibrational characteristics of partial rubbing and complete circular rubbing rotors. The numerical results reveal the response of torsional vibration mainly takes a form of superchronous motion, and its frequency decreases as the rotational speed increases when partial rubbing occurs, and the response of torsional vibration is synchronous when complete circular rubbing occurs. The comparison of the dynamics of rubbing rotors with and without the interaction between bending and torsional vibrations shows the interaction between bending and torsional vibrations advances the rotational speed, at which the response of bending vibration changes from a synchronous motion into a quasi periodic motion, and the interaction between bending and torsional vibrations reduces stability of the rubbing rotor.
基金supported by the National Natural Science Foundation of China(No.11772089)the Fundamental Research Funds for the Central Universities (Nos. N160312001and N160313004)the Research Project of State Key Laboratory of Mechanical System and Vibration(No.MSV201707)
文摘Considering gyroscopic effects caused by rotational speed,torsional vibration as well as coupling effects among inner rotor,out rotor and casing,a dynamic model of the dual-rotor-casing system is established using finite element(FE)method.By comparing the natural characteristics obtained from MATLAB and ANSYS,the developed model is verified.Then rubbing-induced vibration responses in dual-rotor-casing system are analyzed.The effects of rotational speed and speed ratio on rubbing vibration responses of the system are discussed.Results show that different combined frequency components will appear in the spectrum except two unbalanced excitation frequencies and their multiple frequency components,and these frequencies can be used as the dual-rotor aero-engine rubbing failure diagnosis frequencies when rubbing occurs.Besides,the amplitude of torsional vibration is larger than that of lateral vibration under the same working condition,and speed ratio has a great impact on the periodicity of the system rubbing-induced motion trajectory.The amplitude of rubbing-induced responses under counter-rotation is less than that under co-rotation with the same parameters.
基金This project is supported by State Power Company Science and Technology Foundation of China(No.SP11-2002-02-28).
文摘With the establishment of the nonlinear coupled lateral and torsion vibrationequations of rub-impact Jeffcott rotor and through numerical simulations, the influences on lateraland torsion vibration behavior by rotor-to-stator clearance are analyzed, which prove that there isstrong impact on coupled lateral and torsion vibration behavior. Smaller the clearance is, morecomplex the motion of rotor is. When the clearance is larger, the frequency spectrum of rub-impactrotor is mainly composed of 1/2X, 1/3X and 1/4X components. With the decrease of clearance,quasi-periodic and chaotic motions will be present. Under different clearances, the bifurcationdiagrams of lateral and torsion vibrations can be divided into rub-free zone, rub-light zone andthree complex motion zones in which the motion trend of lateral vibration is similar to that of thetorsion vibration. Compared with the lateral vibration, the torsion vibration is of more motionforms and more abundant frequency components in amplitude spectrum.
文摘An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.
基金supported by the Education and Teaching Research Project of Jieyang Vocational and Technical College(JYC2016Y11)
文摘The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects.
基金supported by the National Natural Science Foundation of China(No.11772089)the Fundamental Research Funds for the Central Universities (Nos. N160312001and N160313004)the Research Project of State Key Laboratory of Mechanical System and Vibration(No.MSV201707)
文摘Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate rubbing responses of unbalanced rotor-bladed disk-casing system are studied under different operational speeds.In addition,influences of both plastic deformation of blade and casing failure are analyzed.The results show that there exist some multiple even fractional frequencies in the transient and steady vibration responses of unbalanced rotor.Besides,one nodal diameter vibration of bladed disk coupling with the lateral vibration of the shaft as well as the first order bending vibration of blade can be excited under low operational speed,while the first order bending vibration of blade coupling with the lateral vibration of disk-shaft is easily excited under high operational speed.During rubbing process,three distinct contact states can be observed:broken blade-casing contact,broken blade-blade component-casing contact and broken blade-casing contact/blade component-casing contact/blade selfcontact.It is worth noting that the third contact state is related to the operational speed.With the increase of operational speed,self-contact in the blade may occur.
文摘Considering the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force, a dynamical model of rub-impact rotor system is established, then the nonlinear dynamical behavior is studied by numerical analysis method. The effect of rotation speed, nonlinear stiffitess ratio and speed effect factor on brifurcation and chaotic behavior for rub-impact rotor system is comprehensively analyzed. The analysis results show that the effect of non-symmetry film force, nonlinear stiffness and nonlinear friction force on the dynamical behavior of the rotor system has close relation with rotation speed. The chaotic behavior exists in a wider parameter region, and the chaotic evolution rule is more complicated. The research provides a reliable theory basis and reference for diagnosing some faults of the rotor system.
基金supported by the In Coming Fellowship of Royal Society of the UK and the National Natural Science Foundation of China(10672006)
文摘The phase characteristic of a disk rubbing with a ring supported elastically is investigated and used to explain the mechanism of stiffness increase phenomenon. As long as the rubbing is maintained, the averaged phase difference between the disk and the rotating mass on the disk is defi- nitely less than π/2. When the rubbing finishes, the phase difference quickly approaches to 7r. This behavior is inde- pendent of the physics parameters of the rubbing system. The theoretical results are qualitatively verified with experiments.