期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Weak Fault Detection of Rotor Winding Inter-Turn Short Circuit in Excitation System Based on Residual Interval Observer
1
作者 Gang Liu Xinqi Chen +4 位作者 Lijuan Bao Linbo Xu Chaochao Dai Lei Yang Chengmin Wang 《Structural Durability & Health Monitoring》 EI 2023年第4期337-351,共15页
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi... Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems. 展开更多
关键词 Excitation system interval observer rotor winding weak fault detection inter-turn shortcut
下载PDF
Calculation of torque and speed of induction machines under rotor winding faults
2
作者 马宏忠 胡虔生 +1 位作者 黄允凯 张利民 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期39-43,共5页
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat... Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline. 展开更多
关键词 induction machine rotor winding fault TORQUE SPEED fluctuating
下载PDF
Study of Local Structural Changes on Air Cooling at the End of Rotor Windings for Variable Speed Pumped Storage Generator-Motor
3
作者 Yanliang Qiu Bin Xiong +1 位作者 Zhe Hou Lin Luo 《Energy Engineering》 EI 2022年第6期2243-2254,共12页
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef... The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed. 展开更多
关键词 Pumped storage plants GENERATOR-MOTOR local structural changes rotor windings end
下载PDF
Creation and Development of Turbo-generators with Water-Cooled Stator and Rotor Windings in Shanghai Electrical Machinery Mfg Works
4
作者 Wang GengShanghai Electrical Machinery Mfg. Works 《Electricity》 1996年第1期19-22,共4页
1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful... 1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between 展开更多
关键词 Creation and Development of Turbo-generators with Water-Cooled Stator and rotor windings in Shanghai Electrical Machinery Mfg Works
下载PDF
GENERATOR VIBRATION FAULT DIAGNOSIS METHOD BASED ON ROTOR VIBRATION AND STATOR WINDING PARALLEL BRANCHES CIRCULATING CURRENT CHARACTERISTICS 被引量:2
5
作者 Wan Shuting Li Heming +1 位作者 Li Yonggang Tang Guiji 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期592-596,共5页
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or... Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above. 展开更多
关键词 Generator Fault diagnosis rotor vibration characteristic Stator winding parallel branches circulating current
下载PDF
Intelligent Wind Power Unit with Tandem Wind Rotors and Armatures (Optimization of Front Blade Profile) 被引量:4
6
作者 Yuta Usui Koichi Kubo Toshiaki Kanemoto 《Journal of Energy and Power Engineering》 2012年第11期1791-1799,共9页
The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor an... The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor and the small-sized rear wind rotor drive, as for the upwind type, the inner and the outer rotational armatures, respectively, in keeping the rotational torque counter-balanced between both wind rotors/armatures. The unique rotational behaviors of the tandem wind rotors and the fundamental performances of the unit have been discussed at the previous paper. Continuously, this paper investigates experimentally and numerically the flow condition around the wind rotors to know the flow interactions between the front and the rear wind rotors, and optimizes the blade profile in the front wind rotor. The front blade should work fruitfully at the larger radius and had better not work at the smaller radius for giving plenty of wind energy to the rear wind rotor, taking account of the flow interaction between both wind rotors. 展开更多
关键词 Wind turbine wind energy BLADE tandem wind rotors generator ARMATURE numerical simulation.
下载PDF
Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines
7
作者 程兆雪 李仁年 +1 位作者 杨从新 胡文瑞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第1期13-20,共8页
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete... With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors. 展开更多
关键词 offshore wind energy project horizontal axis wind turbine rotor aerody-namic design annual usable energy pattern factor power coefficient wind turbine rotor wind turbine blade
下载PDF
Noise reduction effect of airfoil and small-scale rotor using serration trailing edge in a wind tunnel test 被引量:16
8
作者 RYI Jaeha CHOI Jong-Soo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第2期325-332,共8页
This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due ... This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due to the inclusion of a serrated trailing edge designed to reduce noise, a 10 k W wind turbine rotor was equipped with a thin serrated trailing edge. The restrictive condition for the serrated trailing edge equipped with the using of a 2D airfoil was examined through the using of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The aerodynamic performance and noise reduction effect of a small-scale model were investigated with the using of a serrated trailing edge. Moreover, the noise levels from the experiment were considered that the noise prediction method could be used for a full-scale rotor. It is confirmed that noise reduction effect is compared with wind tunnel test data at the 2D airfoil and model rotor condition. 展开更多
关键词 wind turbine rotor wind tunnel experiment wind energy trailing edge serration noise reduction effect
原文传递
Acoustic Noise from Tandem Wind Rotors of Intelligent Wind Power Unit 被引量:1
9
作者 Koichi Kubo Nobuhiko Mihara +1 位作者 Akira Enishi Toshiaki Kanemoto 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第2期120-125,共6页
The authors had invented the unique wind power unit composed of the large-sized front wind rotor,the small-sized rear wind rotor and the peculiar generator with the inner and the outer rotational armatures without the... The authors had invented the unique wind power unit composed of the large-sized front wind rotor,the small-sized rear wind rotor and the peculiar generator with the inner and the outer rotational armatures without the conventional stator.This unit is called "Intelligent Wind Power Unit" by the authors.The front and the rear wind rotors drive the inner and the outer armatures,respectively,while the rotational torque is counter-balanced between both armatures/wind rotors.This paper discusses experimentally the acoustic noise from the front and the rear wind rotors.The acoustic noise,in the counter-rotating operation,is induced mainly from the flow interaction between both rotors,and has the dominant power spectrum density at the frequency of the blade passing interaction.The noise is caused mainly from the turbulent fluctuation due to the flow separation on the blade,when the rear wind rotor stops or rotates in the same direction as the front wind rotor. 展开更多
关键词 Acoustic noise Wind turbine Tandem wind rotors Counter-rotation
原文传递
Study on the Rotor Design Method for a Small Propeller-Type Wind Turbine
10
作者 Yasuyuki Nishi Yusuke Yamashita Terumi Inagaki 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期355-362,共8页
Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goa... Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines.To that end,we designed two rotors:Rotor A,based on the rotor optimum design method from the blade element momentum theory,and Rotor B,in which the chord length of the tip is extended and the chord length distribution is linearized.We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis.Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A,but the maximum output coefficient increased by approximately 38.7%.Rotors A and B experienced a large-scale separation on the hub side,which extended to the mean in Rotor A.This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A. 展开更多
关键词 Wind Turbine Propeller-Type Horizontal Axis Blade Element Momentum Theory rotor Design Method
原文传递
Analytical Analysis and Performance Characterization of Brushless Doubly Fed Induction Machines Based on General Air-gap Field Modulation Theory 被引量:7
11
作者 Peng Han Ming Cheng +1 位作者 Xinkai Zhu Zhe Chen 《Chinese Journal of Electrical Engineering》 CSCD 2021年第3期4-19,共16页
Air-gap magnetic field modulation has been widely observed in electric machines.In this study,we present an analytical analysis and performance characterization of brushless doubly fed induction machines(BDFIMs)fed by... Air-gap magnetic field modulation has been widely observed in electric machines.In this study,we present an analytical analysis and performance characterization of brushless doubly fed induction machines(BDFIMs)fed by two independent converters from the perspective of air-gap field modulation.The spiral-loop winding is studied in detail as an example to show the generalized workflow that can also be used to analyze other short-circuited rotor winding types,such as nested-loop and multiphase double-layer windings.Magnetic field conversion factors are introduced to characterize the modulation behavior of special rotor windings and facilitate their comparison in terms of cross-coupling capability,average torque,and harmonic content of the air-gap flux density waveforms.The stator magnetomotive force(MMF),rotor MMF,and resultant air-gap MMF are considered,based on which the closed-form inductance formulas are derived,and the torque equation is obtained along with the optimal current angle for maximum torque operation by using the virtual work principle.The design equations are then developed for the initial sizing and geometry scaling of the BDFIMs.Transient finite element analysis and experimental measurements are performed to validate the analysis. 展开更多
关键词 AC machines air gap magnetic field spatial harmonic frequency domain MODULATION rotor windings
原文传递
Decoupling Scheme for Virtual Synchronous Generator Controlled Wind Farms Participating in Inertial Response 被引量:3
12
作者 Jiangbei Xi Hua Geng Xin Zou 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期347-355,共9页
In this paper,the dynamic coupling between the wind turbine rotor speed recovery(WTRSR)and inertial response of the conventional virtual synchronous generator(VSG)controlled wind farms(WFs)is analyzed.Three distinguis... In this paper,the dynamic coupling between the wind turbine rotor speed recovery(WTRSR)and inertial response of the conventional virtual synchronous generator(VSG)controlled wind farms(WFs)is analyzed.Three distinguishing features are revealed.Firstly,the inertial response characteristics of VSG controlled WFs(VSG-WFs)are impaired by the dynamic coupling.Secondly,when the influence of WTRSR is dominant,the inertial response characteristics of VSG-WFs are even worse than the condition under which WFs do not participate in the response of grid frequency.Thirdly,this phenomenon cannot be eliminated by only enlarging the inertia parameter of VSG-WFs,because the influence of WTRSR would also increase with the enhancement of inertial response.A decoupling scheme to eliminate the negative influence is then proposed in this paper.By starting the WTRSR process after inertial response period,the dynamic coupling is eliminated and the inertial response characteristics of WFs are improved.Finally,the effectiveness of the analysis and the proposed scheme are verified by simulation results. 展开更多
关键词 Wind turbine rotor speed recovery(WTRSR) inertial response virtual synchronous generator(VSG) decoupling scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部