氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过...氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
In situ quick X-ray absorption spectroscopy(QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al_2O_3 catalyst for met...In situ quick X-ray absorption spectroscopy(QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al_2O_3 catalyst for methanol synthesis. In this work, the catalyst, whose activity increases with the reaction temperature and pressure, was studied at calcined, reduced, and reacted conditions. TEM and EDX images for the calcined and reduced catalysts showed that copper was distributed uniformly at both conditions. TPR profile revealed two reduction peaks at 165 and 195 °C for copper species in the calcined catalyst. QXAFS results demonstrated that the calcined form consisted mainly of a mixed Cu O and Zn O, and it was progressively transformed into Cu metal particles and dispersed Zn O species as the reduction treatment. It was demonstrated that activation of the catalyst precursor occurred via a Cu^+intermediate, and the active catalyst predominantly consisted of metallic Cu and Zn O evenunder higher pressures. Structure of the active catalyst did not change with the temperature or pressure, indicating that the role of the Zn was mainly to improve Cu dispersion.This indicates the potential of QXAFS method in studying the structure evolutions of catalysts in methanol synthesis.展开更多
The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent...The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.展开更多
The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al3+determines the bulk structure of cat...The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al3+determines the bulk structure of catalysts, particularly a high content of coordinatively unsaturated Al3+sites(penta-coordinated Al3+,denoted as Al3+penta) could lead to a remarkably improved dehydrogenation activity of the catalyst. The bulk characterization reveals that the sufficient amount of Al3+pentain Al2O3 benefit the dispersion of Pt and Ga2O3 on the Al2O3 support. At the same time, TPR results reveal that the presence of Pt facilitates the reduction of Ga2O3, likely due to the hydrogen spillover between the well dispersed Pt and Ga2O3,which consequently enhances the synergistic function between Pt and Ga2O3 in the dehydrogenation of propane. Recyclability tests demonstrate that the dehydrogenation activity stabilizes after three cycles over the Pt/Ga/Al2O3 catalyst.展开更多
Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperatur...Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.展开更多
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv...TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.展开更多
The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobe...The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .展开更多
文摘氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
基金supported by the National Basic Research Program of China(973 Program,2013CB933104)the National Natural Science Foundation of China(Nos.11275258 and 11135008)
文摘In situ quick X-ray absorption spectroscopy(QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al_2O_3 catalyst for methanol synthesis. In this work, the catalyst, whose activity increases with the reaction temperature and pressure, was studied at calcined, reduced, and reacted conditions. TEM and EDX images for the calcined and reduced catalysts showed that copper was distributed uniformly at both conditions. TPR profile revealed two reduction peaks at 165 and 195 °C for copper species in the calcined catalyst. QXAFS results demonstrated that the calcined form consisted mainly of a mixed Cu O and Zn O, and it was progressively transformed into Cu metal particles and dispersed Zn O species as the reduction treatment. It was demonstrated that activation of the catalyst precursor occurred via a Cu^+intermediate, and the active catalyst predominantly consisted of metallic Cu and Zn O evenunder higher pressures. Structure of the active catalyst did not change with the temperature or pressure, indicating that the role of the Zn was mainly to improve Cu dispersion.This indicates the potential of QXAFS method in studying the structure evolutions of catalysts in methanol synthesis.
基金Supported by the National Natural Science Foundation of China(21673132).
文摘The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.
基金the National Natural Science Foundation of China(No.21676195)the China Postdoctoral Science Foundation(2016M601347)。
文摘The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al3+determines the bulk structure of catalysts, particularly a high content of coordinatively unsaturated Al3+sites(penta-coordinated Al3+,denoted as Al3+penta) could lead to a remarkably improved dehydrogenation activity of the catalyst. The bulk characterization reveals that the sufficient amount of Al3+pentain Al2O3 benefit the dispersion of Pt and Ga2O3 on the Al2O3 support. At the same time, TPR results reveal that the presence of Pt facilitates the reduction of Ga2O3, likely due to the hydrogen spillover between the well dispersed Pt and Ga2O3,which consequently enhances the synergistic function between Pt and Ga2O3 in the dehydrogenation of propane. Recyclability tests demonstrate that the dehydrogenation activity stabilizes after three cycles over the Pt/Ga/Al2O3 catalyst.
基金supported by the Ministry of Science and Technology of China (2005CB221401)the National Natural Science Foundation of China(20873111)the Key Science & Technology Specific Projects of Fujian Province (2009HZ10102)
文摘Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.
基金Supported by the National Natural Science Foundation of China(211031735127108721476226 and 51471076)DICP Fundamental Research Program for Clean Energy(DICPM201307)
文摘TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.
文摘The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .