INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its us...INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which...Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which directly affects the performance of a tire, is generally produced from natural and synthetic rubbers. Intensive scientific studies have been carried out on liquid rubbers because they reduce the consumption of process oils used in the tire production phase and increase dispersion. In this study, the rheological and physico-mechanical properties of rubbers developed using only liquid rubber (liquid isoprene and liquid SBR) with four different viscosities and without using process oil (Styrene Butadiene Rubber—SBR) were investigated. It has been observed that the rubber blends produced by adding four different liquid rubbers to the same recipe caused changes in rheological and physico-mechanical properties compared to the reference sample. It was observed that the minimum torque/viscosity (ML), maximum torque/viscosity (MH) and curing time (t90) in some of the formulas tested decreased significantly due to the use of liquid rubber.展开更多
Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performa...Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.展开更多
The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting...The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting on the swelling, elongation and crosslinking density was observed. The orientational order arising from the correlation between chain segments decreases with the increase of the numbers of both links between junctions and solvent molecules around segments.展开更多
By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These ...By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These soluble and meltable oligomers showing thermostability, semiconducting and paramagnetic properties and also high reactivity at reactions characteristic for aromatic hydroxyl groups were used as active filler at preparation of rubbers from butyl and butadiene-nitrile rubbers. It has been shown that in partial or full substitution of carbon black by oligohydroxynaphthylenes or cooligohydroxynaphthylenephenylamines in composition of vulcanizate the prepared rubbers are characterized by noticeably high heat-physical, physical-mechanical and electrical properties (Pv = 10^8 - 10^6Om. cm ).展开更多
Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic,...Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.展开更多
In this paper, the automated grid method is applied to test for the mechanical properties of conditioned rubbers under the moderate ?nite deformation (not exceeding 100%). More accurate stress-strain curve...In this paper, the automated grid method is applied to test for the mechanical properties of conditioned rubbers under the moderate ?nite deformation (not exceeding 100%). More accurate stress-strain curves of conditioned rubber specimens under di?erent conditioned strains are obtained. Test results show di?erences between these curves. Based on an analysis of the classical constitutive models, a new modi?ed eight-chain model is proposed, which takes account of both the locking stretch of chains and the interaction e?ect in the network. Fitting test data shows that the modi?ed model well characterizes the incompressible hyperelastic mechanical behavior of conditioned rubbers under the moderate ?nite deformation as well as under the large deformation.展开更多
To illustrate mechanisms of Payne effect in rubbers and their nanocomposites experiencing large amplitude oscillatory shear(LAOS),comparison studies were performed in styrene-isoprene-styrene(SIS)copolymers and their ...To illustrate mechanisms of Payne effect in rubbers and their nanocomposites experiencing large amplitude oscillatory shear(LAOS),comparison studies were performed in styrene-isoprene-styrene(SIS)copolymers and their selectively crosslinked materials at temperatures below and above glass transition temperature of the polystyrene(PS)phase.It was found that under periodic dynamic shear,the strain softening is reversible when the polyisoprene(PI)phase,either crosslinked or not,is restricted by hard PS domains but it shows hysteresis once the PS domains disassociate.The strain softening can happen at the time scale of intrinsic Rouse relaxation of elastically active network strands.Critical stress of strain softening scales with number density of elastically active network strands,a simple relation being verified not only in the selectively crosslinked SIS copolymers but also in PI gum vulcanizates and carbon black filled PI compounds.Payne effect is traditionally used to term strain softening of highly filled rubber vulcanizates under LAOS deformation while evidenced herein is that the Payne effect of highly filled rubber vulcanizates shares the mechanism being common to the strain softening of SIS copolymers.展开更多
Comprehensive Summary,As one of the three types of polymeric materials,rubber has played an irreplaceable role in various fields such as industrial production,aerospace,military,and national defense.Improving the cold...Comprehensive Summary,As one of the three types of polymeric materials,rubber has played an irreplaceable role in various fields such as industrial production,aerospace,military,and national defense.Improving the cold resistance of rubbers and extending their service temperature range have always been one of the main focuses in rubber research.However,there have been few detailed public reports or literatures on the progress or summary of cold-resistant rubbers,creating an invisible barrier for new researchers wishing to enter this field of research.Therefore,starting from the basis of polymer physics,this review introduces the research difficulties in this field and systematically summarizes the research progress in constructing cold-resistant rubbers based on three different types of flexible polymer chains in recent years.In addition,several important properties of cold-resistant rubbers including mechanical performance,oil resistance,and self-healing ability are also discussed along with the summary of recent progresses.Finally,the future challenges and prospects of cold-resistant rubbers are discussed.展开更多
BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-...BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-term recurrence,and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL.METHODS This was a prospective,multicenter,randomized study.A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding(EFSB)or an ERBL group.All patients were followed-up for 12 months.Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score(HSS)and a visual analog scale(VAS).Continuous variables were reported as medians and interquartile range.RESULTS One hundred and ninety-five patients were enrolled,with 98 in the EFSB group.HSS was lower in the EFSB group than in the ERBL group at 8 weeks[4.0(3.0-5.0)vs 5.0(4.0-6.0),P=0.003]and 12-month[2.0(1.0-3.0)vs 3.0(2.0-3.0),P<0.001]of follow-up.The prolapse recurrence rate was lower in the EFSB group at 12 months(11.2%vs 21.6%,P=0.038).Multiple linear regression analysis demonstrated that EFSB treatment[B=-0.915,95%confidence interval(CI):−1.301 to−0.530,P=0.001]and rubber band number(B=0.843,95%CI:0.595-1.092,P<0.001)were negatively and independently associated with the VAS score 24 hours post-procedure.The median VAS was lower in the EFSB group than in the ERBL[2.0(1.0-3.0)vs 3.0(2.0-4.0),P<0.001].CONCLUSION Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.展开更多
In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing...In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat...Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a...In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.展开更多
Recently,ZnO-based composites have been widely applied in the field of electric power.To meet the diverse application requirements,it is necessary to figure out the I-V characteristics of ZnO composites whose high-vol...Recently,ZnO-based composites have been widely applied in the field of electric power.To meet the diverse application requirements,it is necessary to figure out the I-V characteristics of ZnO composites whose high-voltage and ground-voltage electrodes are arranged on the opposite sides with a certain horizontal distance.30 vol%,40 vol%and 50 vol%ZnO-based silicone rubber composites were prepared.The horizontal distance between their electrodes was set as 50,100,500μm,1 and 2 mm,respectively.Results showed that with the increase of ZnO fillers volume fraction under a fixed horizontal distance of 100μm,from 30 vol%to 50 vol%,the I-V curves shifted left,the leakage current increased and the switching voltage decreased.When the horizontal distance between electrodes increased from 50μm to 1 mm under a fixed doping concentration of 40%,the I-V curves shifted to the right,the leakage current dropped and the switching voltage rose.The mathematical and physical models were established to explain the results.This work provides a referential significance for the practical application of ZnO composites,such as 5G folding mobile phones and power electronic modules.展开更多
We have read the article by Qu et al with great interest,as it presents an inte-gration of endoscopic polidocanol foam sclerotherapy with rubber band ligation in patients with Grade II-III internal hemorrhoids.The aut...We have read the article by Qu et al with great interest,as it presents an inte-gration of endoscopic polidocanol foam sclerotherapy with rubber band ligation in patients with Grade II-III internal hemorrhoids.The authors conducted a prospective,multicenter,randomized study to evaluate the long-term sympto-matic and endoscopic efficacy of this combined intervention.In this discussion,we focus on the procedural steps of this combined strategy and suggest potential avenues for future research.展开更多
The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.B...The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.By fitting the identified nonlinear coefficients under different excitation amplitudes,the nonlinear vibration responses of the system are predicted.The results show that the accuracy of the BWM is higher than that of the CSFM,especially in the non-resonant region.However,the optimization time of the BWM is longer than that of the CSFM.展开更多
基金support of National Natural Science Foundation of China(No.22173033,and 22241501)Natural Science Foundation of Guangdong Province,China(No.2023A1515011395).
文摘INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
文摘Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which directly affects the performance of a tire, is generally produced from natural and synthetic rubbers. Intensive scientific studies have been carried out on liquid rubbers because they reduce the consumption of process oils used in the tire production phase and increase dispersion. In this study, the rheological and physico-mechanical properties of rubbers developed using only liquid rubber (liquid isoprene and liquid SBR) with four different viscosities and without using process oil (Styrene Butadiene Rubber—SBR) were investigated. It has been observed that the rubber blends produced by adding four different liquid rubbers to the same recipe caused changes in rheological and physico-mechanical properties compared to the reference sample. It was observed that the minimum torque/viscosity (ML), maximum torque/viscosity (MH) and curing time (t90) in some of the formulas tested decreased significantly due to the use of liquid rubber.
基金the Natural Science Foundation of China(No.21476178)the Fundamental Research Funds for the Central Universities(WUT:2015IVA059)
文摘Gaskets are applied in PEMFCs(proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton's reagents with different H_2O_2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H_2O_2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton's reagents and the influence of H_2O_2 in the degradation process.
基金Supported by the National Natural Science Foundation of China
文摘The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting on the swelling, elongation and crosslinking density was observed. The orientational order arising from the correlation between chain segments decreases with the increase of the numbers of both links between junctions and solvent molecules around segments.
文摘By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These soluble and meltable oligomers showing thermostability, semiconducting and paramagnetic properties and also high reactivity at reactions characteristic for aromatic hydroxyl groups were used as active filler at preparation of rubbers from butyl and butadiene-nitrile rubbers. It has been shown that in partial or full substitution of carbon black by oligohydroxynaphthylenes or cooligohydroxynaphthylenephenylamines in composition of vulcanizate the prepared rubbers are characterized by noticeably high heat-physical, physical-mechanical and electrical properties (Pv = 10^8 - 10^6Om. cm ).
文摘Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.
文摘In this paper, the automated grid method is applied to test for the mechanical properties of conditioned rubbers under the moderate ?nite deformation (not exceeding 100%). More accurate stress-strain curves of conditioned rubber specimens under di?erent conditioned strains are obtained. Test results show di?erences between these curves. Based on an analysis of the classical constitutive models, a new modi?ed eight-chain model is proposed, which takes account of both the locking stretch of chains and the interaction e?ect in the network. Fitting test data shows that the modi?ed model well characterizes the incompressible hyperelastic mechanical behavior of conditioned rubbers under the moderate ?nite deformation as well as under the large deformation.
基金the National Natural Science Foundation of China(Nos.U1908221,51873190 and 51790503)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SZ-TD002).
文摘To illustrate mechanisms of Payne effect in rubbers and their nanocomposites experiencing large amplitude oscillatory shear(LAOS),comparison studies were performed in styrene-isoprene-styrene(SIS)copolymers and their selectively crosslinked materials at temperatures below and above glass transition temperature of the polystyrene(PS)phase.It was found that under periodic dynamic shear,the strain softening is reversible when the polyisoprene(PI)phase,either crosslinked or not,is restricted by hard PS domains but it shows hysteresis once the PS domains disassociate.The strain softening can happen at the time scale of intrinsic Rouse relaxation of elastically active network strands.Critical stress of strain softening scales with number density of elastically active network strands,a simple relation being verified not only in the selectively crosslinked SIS copolymers but also in PI gum vulcanizates and carbon black filled PI compounds.Payne effect is traditionally used to term strain softening of highly filled rubber vulcanizates under LAOS deformation while evidenced herein is that the Payne effect of highly filled rubber vulcanizates shares the mechanism being common to the strain softening of SIS copolymers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22105222 and 21825503).
文摘Comprehensive Summary,As one of the three types of polymeric materials,rubber has played an irreplaceable role in various fields such as industrial production,aerospace,military,and national defense.Improving the cold resistance of rubbers and extending their service temperature range have always been one of the main focuses in rubber research.However,there have been few detailed public reports or literatures on the progress or summary of cold-resistant rubbers,creating an invisible barrier for new researchers wishing to enter this field of research.Therefore,starting from the basis of polymer physics,this review introduces the research difficulties in this field and systematically summarizes the research progress in constructing cold-resistant rubbers based on three different types of flexible polymer chains in recent years.In addition,several important properties of cold-resistant rubbers including mechanical performance,oil resistance,and self-healing ability are also discussed along with the summary of recent progresses.Finally,the future challenges and prospects of cold-resistant rubbers are discussed.
基金Supported by the Hospital Funded Clinical Research of Xinhua Hospital,No.19XHCR16D.
文摘BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-term recurrence,and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL.METHODS This was a prospective,multicenter,randomized study.A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding(EFSB)or an ERBL group.All patients were followed-up for 12 months.Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score(HSS)and a visual analog scale(VAS).Continuous variables were reported as medians and interquartile range.RESULTS One hundred and ninety-five patients were enrolled,with 98 in the EFSB group.HSS was lower in the EFSB group than in the ERBL group at 8 weeks[4.0(3.0-5.0)vs 5.0(4.0-6.0),P=0.003]and 12-month[2.0(1.0-3.0)vs 3.0(2.0-3.0),P<0.001]of follow-up.The prolapse recurrence rate was lower in the EFSB group at 12 months(11.2%vs 21.6%,P=0.038).Multiple linear regression analysis demonstrated that EFSB treatment[B=-0.915,95%confidence interval(CI):−1.301 to−0.530,P=0.001]and rubber band number(B=0.843,95%CI:0.595-1.092,P<0.001)were negatively and independently associated with the VAS score 24 hours post-procedure.The median VAS was lower in the EFSB group than in the ERBL[2.0(1.0-3.0)vs 3.0(2.0-4.0),P<0.001].CONCLUSION Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.
基金National Natural Science Foundation of China (Grant No. U2141246)。
文摘In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing.
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
基金supported by the Key Research and Development Plan of Shaanxi Province (2023-GHZD-12)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (SVL2021-KF-12)+1 种基金Fundamental Research Funds for the Central Universities (G2020KY05112)the 111 Project (BP0719007)
文摘Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
文摘In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.
基金Natural Science Foundation of China,Grant/Award Numbers:51921005,52125703,52207029State Key Laboratory of Power System Operation and Control,Grant/Award Number:SKLD22KZ02。
文摘Recently,ZnO-based composites have been widely applied in the field of electric power.To meet the diverse application requirements,it is necessary to figure out the I-V characteristics of ZnO composites whose high-voltage and ground-voltage electrodes are arranged on the opposite sides with a certain horizontal distance.30 vol%,40 vol%and 50 vol%ZnO-based silicone rubber composites were prepared.The horizontal distance between their electrodes was set as 50,100,500μm,1 and 2 mm,respectively.Results showed that with the increase of ZnO fillers volume fraction under a fixed horizontal distance of 100μm,from 30 vol%to 50 vol%,the I-V curves shifted left,the leakage current increased and the switching voltage decreased.When the horizontal distance between electrodes increased from 50μm to 1 mm under a fixed doping concentration of 40%,the I-V curves shifted to the right,the leakage current dropped and the switching voltage rose.The mathematical and physical models were established to explain the results.This work provides a referential significance for the practical application of ZnO composites,such as 5G folding mobile phones and power electronic modules.
文摘We have read the article by Qu et al with great interest,as it presents an inte-gration of endoscopic polidocanol foam sclerotherapy with rubber band ligation in patients with Grade II-III internal hemorrhoids.The authors conducted a prospective,multicenter,randomized study to evaluate the long-term sympto-matic and endoscopic efficacy of this combined intervention.In this discussion,we focus on the procedural steps of this combined strategy and suggest potential avenues for future research.
文摘The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.By fitting the identified nonlinear coefficients under different excitation amplitudes,the nonlinear vibration responses of the system are predicted.The results show that the accuracy of the BWM is higher than that of the CSFM,especially in the non-resonant region.However,the optimization time of the BWM is longer than that of the CSFM.