Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total prote...Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.展开更多
用^(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-S...用^(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-Sepharose fast flow和Sephacryl S-300柱层析在ND-PAGE,SDS-PAGE上显示为一条带,估计纯度达90%以上,得率比以前报道的高12倍。纯化的结合蛋白表面巯基数经测定为12±1个,总巯基数为36±1个。远紫外CD光谱具有典型的α-螺旋结构的光谱特性,α-螺旋度为39%。此外,以纯化的豌豆结合蛋白制备了多克隆抗体。琼脂糖双扩散实验显示,结合蛋白的抗体与结合蛋白产生一条沉淀线,而与豌豆的RubisCO无沉淀反应,这表明所得到的抗体是高度专一的。展开更多
Saccharina japonica is a common macroalga in sublittoral communities of cold seawater environments, and consequently may have highly efficient ribulose-1, 5-bisphosphate carboxylase/ oxygenase (Rubisco) activity for...Saccharina japonica is a common macroalga in sublittoral communities of cold seawater environments, and consequently may have highly efficient ribulose-1, 5-bisphosphate carboxylase/ oxygenase (Rubisco) activity for carbon assimilation. In our study, we cloned the full-length Rubisco gene from S.japonica (SJ-rbc). It contained an open reading frame for a large subunit gene (SJ-rbcL) of 1 467 bp, a small subunit gene (SJ-rbcS) of 420 bp, and a SJ-rbcL/S intergenie spacer of 269 bp. The deduced peptides of SJ-rbcL and SJ-rbcS were 488 and 139 amino acids with theoretical molecular weights and isoelectric points of 53.97 kDa, 5.81 and 15,84 kDa, 4.71, respectively. After induction with 1 mmol/L isopropyl-β-D- thiogalactopyranoside for 5 h and purification by Ni2+ affinity chromatography, electrophoresis and western blot detection demonstrated successful expression of the 55 kDa SJ-rbcL protein. Real-time quantitative PCR showed that the mRNA levels of SJ-rbcL in gametophytes increased when transferred into normal growth conditions and exhibited diurnal variations: increased expression during the day but suppressed expression at night. This observation implied that Rubisco played a role in normal gametophytic growth and development. In juvenile sporophytes, mRNA levels of SJ-rbcL, carbonic anhydrase, Calvin-Benson- Bassham cycle-related enzyme, and chloroplast light-harvesting protein were remarkably increased under continuous light irradiance. Similarly, expression of these genes was up-regulated under blue light irradiance at 350 umol/(m2.s). Our results indicate that long-term white light and short-term blue light irradiance enhances juvenile sporophytic growth by synergistic effects of various photosynthetic elements.展开更多
Hexadecameric formI Rubisco,which consisting consists of eight large(RbcL)and eight small(RbcS)subunits,is the most abundant enzyme on earth.Extensive efforts to engineer an improved Rubisco to speed up its catalytic ...Hexadecameric formI Rubisco,which consisting consists of eight large(RbcL)and eight small(RbcS)subunits,is the most abundant enzyme on earth.Extensive efforts to engineer an improved Rubisco to speed up its catalytic efficiency and ultimately increase agricultural productivity.However,difficulties with correct folding and assembly in foreign hosts or in vitro have hampered the genetic manipulation of hexadecameric Rubisco.In this study,we reconstituted Synechococcus sp.Pcc6301 Rubisco in vitro using the chaperonin system and assembly factors from cyanobacteria and Arabidopsis thaliana(At).Rubisco holoenzyme was produced in the presence of cyanobacterial Rubisco accumulation factor 1(Raf1)alone or both AtRaf1 and bundle-sheath defective-2(AtBsd2)from Arabidopsis.RbcL released from GroEL is assembly capable in the presence of ATP,and AtBsd2 functions downstream of AtRaf1.Cryo-EM structures of RbcL8-AtRaf18,RbcL8-AtRaf14-AtBsd2s,and RbcLs revealed that the interactions between RbcL and AtRaf1 are looser than those between prokaryotic RbcL and Raf1,with AtRaf1 tilting 7°farther away from RbcL.AtBsd2 stabilizes the flexible regions of RbcL,including the N and C termini,the 60s loop,and loop 6.Using these data,combined with previous findings,we propose the possible biogenesis pathways of prokaryotic and eukaryotic Rubisco.展开更多
基金supported by the National Natural Science Foundation of China (30871578)the Key Project of National Plant Transgenic Genes of China(2008ZX08002004,2011ZX08002004)
文摘Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.
文摘用^(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-Sepharose fast flow和Sephacryl S-300柱层析在ND-PAGE,SDS-PAGE上显示为一条带,估计纯度达90%以上,得率比以前报道的高12倍。纯化的结合蛋白表面巯基数经测定为12±1个,总巯基数为36±1个。远紫外CD光谱具有典型的α-螺旋结构的光谱特性,α-螺旋度为39%。此外,以纯化的豌豆结合蛋白制备了多克隆抗体。琼脂糖双扩散实验显示,结合蛋白的抗体与结合蛋白产生一条沉淀线,而与豌豆的RubisCO无沉淀反应,这表明所得到的抗体是高度专一的。
基金Supported by the Agriculture Science&Technology Achievements Transformation Fund(No.2011GB24910005)the Modern Agricultural-Industry Technology Research Project(No.200903030)+2 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A406)the Shandong Agriculture Breeding Engineering Biological Resources Innovation of Research Projectthe National"Twelfth Five-Year"Plan for Science&Technology Support(No.2013BAB01B01)
文摘Saccharina japonica is a common macroalga in sublittoral communities of cold seawater environments, and consequently may have highly efficient ribulose-1, 5-bisphosphate carboxylase/ oxygenase (Rubisco) activity for carbon assimilation. In our study, we cloned the full-length Rubisco gene from S.japonica (SJ-rbc). It contained an open reading frame for a large subunit gene (SJ-rbcL) of 1 467 bp, a small subunit gene (SJ-rbcS) of 420 bp, and a SJ-rbcL/S intergenie spacer of 269 bp. The deduced peptides of SJ-rbcL and SJ-rbcS were 488 and 139 amino acids with theoretical molecular weights and isoelectric points of 53.97 kDa, 5.81 and 15,84 kDa, 4.71, respectively. After induction with 1 mmol/L isopropyl-β-D- thiogalactopyranoside for 5 h and purification by Ni2+ affinity chromatography, electrophoresis and western blot detection demonstrated successful expression of the 55 kDa SJ-rbcL protein. Real-time quantitative PCR showed that the mRNA levels of SJ-rbcL in gametophytes increased when transferred into normal growth conditions and exhibited diurnal variations: increased expression during the day but suppressed expression at night. This observation implied that Rubisco played a role in normal gametophytic growth and development. In juvenile sporophytes, mRNA levels of SJ-rbcL, carbonic anhydrase, Calvin-Benson- Bassham cycle-related enzyme, and chloroplast light-harvesting protein were remarkably increased under continuous light irradiance. Similarly, expression of these genes was up-regulated under blue light irradiance at 350 umol/(m2.s). Our results indicate that long-term white light and short-term blue light irradiance enhances juvenile sporophytic growth by synergistic effects of various photosynthetic elements.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDA28030102)the National Key Research and Developmental Program of China(2021YFF1000203-14,granted to W.Z.)the National Natural Science Foundation of China(32170260).
文摘Hexadecameric formI Rubisco,which consisting consists of eight large(RbcL)and eight small(RbcS)subunits,is the most abundant enzyme on earth.Extensive efforts to engineer an improved Rubisco to speed up its catalytic efficiency and ultimately increase agricultural productivity.However,difficulties with correct folding and assembly in foreign hosts or in vitro have hampered the genetic manipulation of hexadecameric Rubisco.In this study,we reconstituted Synechococcus sp.Pcc6301 Rubisco in vitro using the chaperonin system and assembly factors from cyanobacteria and Arabidopsis thaliana(At).Rubisco holoenzyme was produced in the presence of cyanobacterial Rubisco accumulation factor 1(Raf1)alone or both AtRaf1 and bundle-sheath defective-2(AtBsd2)from Arabidopsis.RbcL released from GroEL is assembly capable in the presence of ATP,and AtBsd2 functions downstream of AtRaf1.Cryo-EM structures of RbcL8-AtRaf18,RbcL8-AtRaf14-AtBsd2s,and RbcLs revealed that the interactions between RbcL and AtRaf1 are looser than those between prokaryotic RbcL and Raf1,with AtRaf1 tilting 7°farther away from RbcL.AtBsd2 stabilizes the flexible regions of RbcL,including the N and C termini,the 60s loop,and loop 6.Using these data,combined with previous findings,we propose the possible biogenesis pathways of prokaryotic and eukaryotic Rubisco.