期刊文献+
共找到1,002篇文章
< 1 2 51 >
每页显示 20 50 100
非线性控制系统的Runge-Kutta方法的输入状态稳定
1
作者 范振成 《闽江学院学报》 2024年第2期1-6,共6页
研究在什么条件下Runge-Kutta方法能够保持非线性控制系统的输入状态稳定。给出了Runge-Kutta方法生成的近似解保持控制系统真解的输入状态稳定的充分条件,特别证明了在一些常规条件下,所有Gauss-Legendre,Radau IA,Radau IIA,Lobatto I... 研究在什么条件下Runge-Kutta方法能够保持非线性控制系统的输入状态稳定。给出了Runge-Kutta方法生成的近似解保持控制系统真解的输入状态稳定的充分条件,特别证明了在一些常规条件下,所有Gauss-Legendre,Radau IA,Radau IIA,Lobatto IIIC型方法生成的近似解能够保持控制系统真解的输入状态稳定,这为实际应用中如何选择控制系统的数值方法问题奠定了理论基础。 展开更多
关键词 控制系统 runge-kutta方法 输入状态稳定
下载PDF
含Caputo-Fabrizio分数阶算子的非线性刚性泛函微分方程Runge-Kutta方法的稳定性
2
作者 文立平 杨经纬 《湘潭大学学报(自然科学版)》 CAS 2023年第4期8-17,共10页
该文针对一类带有Caputo-Fabrizio分数阶算子的非线性刚性泛函微分方程初值问题,利用线性插值技巧离散Caputo-Fabrizio算子,结合求解常微分方程的数值方法,构造了求解该问题的Runge-Kutta方法,给出了在一定条件下方法的非线性稳定性结果.
关键词 非线性刚性泛函微分方程 Caputo-Fabrizio分数阶算子 runge-kutta方法 稳定性 代数稳定性
下载PDF
Symplectic partitioned Runge-Kutta method based onthe eighth-order nearly analytic discrete operator and its wavefield simulations 被引量:3
3
作者 张朝元 马啸 +1 位作者 杨磊 宋国杰 《Applied Geophysics》 SCIE CSCD 2014年第1期89-106,117,118,共20页
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te... We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research. 展开更多
关键词 SYMPLECTIC partitioned runge-kutta method NEARLY ANALYTIC DISCRETE OPERATOR Numerical dispersion Wavefield simulation
下载PDF
Runge-Kutta型多尺度神经网络求解非定常偏微分方程
4
作者 陈泽斌 冯新龙 《新疆大学学报(自然科学版)(中英文)》 CAS 2023年第2期142-149,共8页
提出了基于Runge-Kutta的多尺度神经网络方法求解非定常偏微分方程.利用q阶Runge-Kutta构造时间迭代格式,通过建立多时间步的总损失函数,实现多时间步的神经网络参数共享,并预测时域内任意时刻的函数值.同时采用m-缩放因子加快损失函数... 提出了基于Runge-Kutta的多尺度神经网络方法求解非定常偏微分方程.利用q阶Runge-Kutta构造时间迭代格式,通过建立多时间步的总损失函数,实现多时间步的神经网络参数共享,并预测时域内任意时刻的函数值.同时采用m-缩放因子加快损失函数收敛,提高数值解精度.最后,给出了若干数值实验验证所提方法的有效性. 展开更多
关键词 非定常偏微分方程 q阶runge-kutta 多尺度神经网络 m-缩放因子 高精度
下载PDF
基于NAD算子的三阶Runge-Kutta方法及波场模拟
5
作者 陈丽 张朝元 +1 位作者 朱兴文 李梦巧 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期122-128,共7页
为求解二维声波方程,本文结合空间高阶偏导数离散化的八阶NAD算子和时间导数离散化的三阶Runge-Kutta方法,推导出八阶NAD-RK算法。详细研究了八阶NAD-RK算法的计算效率和地震波数值模拟。结果显示:在达到相同精度下,八阶NAD-RK算法的内... 为求解二维声波方程,本文结合空间高阶偏导数离散化的八阶NAD算子和时间导数离散化的三阶Runge-Kutta方法,推导出八阶NAD-RK算法。详细研究了八阶NAD-RK算法的计算效率和地震波数值模拟。结果显示:在达到相同精度下,八阶NAD-RK算法的内存需求约为八阶LWC算法的20%,约为八阶SG算法的25%;八阶NAD-RK算法的计算速度约为八阶LWC算法的5.8倍,约为八阶SG算法的1.52倍。地震波数值模拟实验进一步验证八阶NAD-RK算法数值频散压制效果。 展开更多
关键词 声波方程 NAD算子 runge-kutta方法 计算效率 数值模拟
下载PDF
求解二维声波方程的高精度Runge-Kutta方法
6
作者 陈丽 朱兴文 张朝元 《大理大学学报》 2023年第6期20-23,共4页
基于二维声波方程,结合八阶NAD算子离散空间高阶偏导数和三阶Runge-Kutta方法离散时间导数,发展了八阶NAD-RK算法。分析八阶NAD-RK算法的理论误差和数值误差,并详细推导了其稳定性条件。结果显示:同八阶Lax-Wendroff格式和八阶交错网格... 基于二维声波方程,结合八阶NAD算子离散空间高阶偏导数和三阶Runge-Kutta方法离散时间导数,发展了八阶NAD-RK算法。分析八阶NAD-RK算法的理论误差和数值误差,并详细推导了其稳定性条件。结果显示:同八阶Lax-Wendroff格式和八阶交错网格格式相比,八阶NAD-RK算法具有最小的数值误差。 展开更多
关键词 声波方程 NAD算子 runge-kutta方法 误差分析 稳定性条件
下载PDF
基于Runge-Kutta法分析刚性平面附近空化气泡的动力学
7
作者 宣力文 梁金福 《兰州文理学院学报(自然科学版)》 2023年第3期40-44,共5页
用镜像空化泡等效替代刚性平面,得到超声场中刚性平面附近空化泡的动力学方程.运用Runge-Kutta法数值计算了该方程,并和自由声场中空化泡动力学方程的数值解进行对比分析.结果表明:刚性平面对空化气泡脉动具有抑制作用;气泡内的气体绝... 用镜像空化泡等效替代刚性平面,得到超声场中刚性平面附近空化泡的动力学方程.运用Runge-Kutta法数值计算了该方程,并和自由声场中空化泡动力学方程的数值解进行对比分析.结果表明:刚性平面对空化气泡脉动具有抑制作用;气泡内的气体绝热系数和液体粘度系数越小,气泡溃灭速度越大,对平面的作用也越大.研究结果有利于认识空化气泡对刚性壁面的作用机制. 展开更多
关键词 runge-kutta 镜像法 刚性平面 空化气泡
下载PDF
CONVERGENCE ANALYSIS OF RUNGE-KUTTA METHODS FOR A CLASS OF RETARDED DIFFERENTIAL ALGEBRAIC SYSTEMS 被引量:4
8
作者 肖飞雁 张诚坚 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期65-74,共10页
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ... This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result. 展开更多
关键词 CONVERGENCE runge-kutta methods Lagrange interpolation retarded dif-ferential algebraic systems
下载PDF
Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system 被引量:2
9
作者 胡妹芳 陈传淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期747-760,共14页
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ... The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results. 展开更多
关键词 Hamiltonian system energy conservation SYMPLECTICITY finite elementmethod runge-kutta method
下载PDF
Projected Runge-Kutta methods for constrained Hamiltonian systems 被引量:4
10
作者 Yi WEI Zichen DENG +1 位作者 Qingjun LI Bo WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1077-1094,共18页
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi... Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature. 展开更多
关键词 projected runge-kutta (R-K) method differential-algebraic equation(DAE) constrained Hamiltonian system energy and constraint preservation constraint violation
下载PDF
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation 被引量:2
11
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期1027-1034,共8页
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ... Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors. 展开更多
关键词 MULTI-SYMPLECTIC Landau-Ginzburg-Higgs equation runge-kutta method conservation law soliton solution
下载PDF
Delay-dependent stability analysis of Runge-Kutta methods for neutral delay differential equations 被引量:1
12
作者 宋明辉 刘明珠 B S SIDIBE 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期129-135,共7页
The aim of this paper is to study the asymptotic stability properties of Runge Kutta(R-K) methods for neutral differential equations(NDDEs) when they are applied to the linear test equation of the form: y′(t)=ay(t)... The aim of this paper is to study the asymptotic stability properties of Runge Kutta(R-K) methods for neutral differential equations(NDDEs) when they are applied to the linear test equation of the form: y′(t)=ay(t)+by(t-τ)+cy’(t-τ), t>0, y(t)=g(t), -τ≤t≤0, with a,b,c∈[FK(W+3mm\.3mm][TPP129A,+3mm?3mm,BP], τ>0 and g(t) is a continuous real value function. In this paper we are concerned with the dependence of stability region on a fixed but arbitrary delay τ. In fact, it is one of the N.Guglielmi open problems to investigate the delay dependent stability analysis for NDDEs. The results that the 2,3 stages non natural R-K methods are unstable as Radau IA and Lobatto IIIC are proved. And the s stages Radau IIA methods are unstable, however all Gauss methods are compatible. 展开更多
关键词 NEUTRAL delay differention equation natural runge-kutta methods Nт(0)-stability Nт(0)-com patibility
下载PDF
A class of twostep continuity Runge-Kutta methods for solving singular delay differential equations and its convergence 被引量:1
13
作者 Leng Xin Liu Degui +1 位作者 Song Xiaoqiu Chen Lirong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期908-916,共9页
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio... An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient. 展开更多
关键词 CONVERGENCE singular delay differential equations two-step continuity runge-kutta methods.
下载PDF
基于精细Runge-Kutta混合积分法的车桥耦合振动非迭代求解算法 被引量:11
14
作者 杜宪亭 夏禾 +2 位作者 张田 田园 曹艳梅 《振动与冲击》 EI CSCD 北大核心 2013年第13期39-42,55,共5页
针对结构非线性问题,采用4阶Runge-Kutta法展开精细积分法中响应状态方程的Duhamel项,构造了一种既可以避免迭代又具有较高精度的精细Runge-Kutta混合积分方法,在此基础上提出了适用于车桥耦合振动高效求解的分析框架。车桥耦合系统由... 针对结构非线性问题,采用4阶Runge-Kutta法展开精细积分法中响应状态方程的Duhamel项,构造了一种既可以避免迭代又具有较高精度的精细Runge-Kutta混合积分方法,在此基础上提出了适用于车桥耦合振动高效求解的分析框架。车桥耦合系统由车辆、桥梁子系统组成,均采用有限元建模,其中车辆子系统采用部件刚体假定,而桥梁子系统借助于振型叠加法缩减自由度数目;两个子系统内部非线性作用以及系统间的相互作用通过非线性的虚拟力表达。以一节4轴客车匀速通过32m简支梁为研究对象,分别采用分析框架法、Runge-Kutta法进行动力分析。数值结果对比表明:相对于Runge-Kutta法,精细Runge-Kutta混合法能够显著提高计算收敛的积分步长;分析框架可以应用到实际工程中。 展开更多
关键词 车桥系统 动力相互作用 精细积分法 runge-kutta 振型叠加法
下载PDF
Landau-Ginzburg-Higgs方程的多辛Runge-Kutta方法 被引量:7
15
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《应用数学和力学》 EI CSCD 北大核心 2009年第8期963-969,共7页
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该... 非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性. 展开更多
关键词 多辛 Landau-Ginzburg-Higgs方程 rungekutta方法 守恒律 孤子解
下载PDF
Runge-Kutta方法求解结构动力学方程 被引量:8
16
作者 吴志桥 高普云 任钧国 《系统仿真学报》 CAS CSCD 北大核心 2010年第9期2085-2090,2105,共7页
将几种具有不同稳定性的Runge-Kutta方法应用到结构动力学方程的数值求解中。针对增量形式的动力学方程,使用改进的Newton-Raphson迭代,研究了减少计算量的两种方法:(1)使用单对角隐式Runge-Kutta方法,(2)应用转化矩阵。采用逼近算子的... 将几种具有不同稳定性的Runge-Kutta方法应用到结构动力学方程的数值求解中。针对增量形式的动力学方程,使用改进的Newton-Raphson迭代,研究了减少计算量的两种方法:(1)使用单对角隐式Runge-Kutta方法,(2)应用转化矩阵。采用逼近算子的谱半径分析了稳定性与数值阻尼特性,解释了L-稳定方法抑制高频振荡的原因。数值算例表明在精确解上较小的物理阻尼能有效的抑制高频振荡,但对各种直接积分方法的影响很小,高精度的L-稳定Runge-Kutta方法能在有效抑制高频振荡的同时高精度的求解低频振动。 展开更多
关键词 结构动力学方程 runge-kutta方法 数值阻尼 L-稳定性
下载PDF
辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究 被引量:6
17
作者 李庆军 叶学华 +1 位作者 王博 王艳 《应用数学和力学》 CSCD 北大核心 2014年第12期1299-1307,共9页
卫星交会对接问题是实现太空平台等空间系统的关键问题之一.考虑了由于地球引力作用而引起的卫星交会对接中的非线性动力学问题.首先,采用能量方法给出Lagrange函数;然后,通过引入广义坐标和广义动量,以及Legendre变换,得到Hamilton方程... 卫星交会对接问题是实现太空平台等空间系统的关键问题之一.考虑了由于地球引力作用而引起的卫星交会对接中的非线性动力学问题.首先,采用能量方法给出Lagrange函数;然后,通过引入广义坐标和广义动量,以及Legendre变换,得到Hamilton方程;随后,采用辛Runge-Kutta方法求解该Hamilton方程,并与传统的四阶Runge-Kutta方法对比.数值结果表明:辛Runge-Kutta方法能够在积分过程中长时间保持系统的固有特性,为天体动力学问题的研究提供了良好的数值方法. 展开更多
关键词 卫星空间交会对接 非线性动力学 HAMILTON系统 runge-kutta方法
下载PDF
基于2级3阶单对角隐式Runge-Kutta法的电磁暂态计算方法 被引量:14
18
作者 杨萌 汪芳宗 《电力系统保护与控制》 EI CSCD 北大核心 2017年第6期68-73,共6页
在电力系统电磁暂态计算中,由于各种突变情况的发生,将导致数值计算中存在数值振荡。为有效解决电力系统电磁暂态计算中的数值振荡问题,将一种2级3阶单对角隐式Runge-Kutta法运用于电磁暂态数值计算中。由理论分析可知,该数值积分方法... 在电力系统电磁暂态计算中,由于各种突变情况的发生,将导致数值计算中存在数值振荡。为有效解决电力系统电磁暂态计算中的数值振荡问题,将一种2级3阶单对角隐式Runge-Kutta法运用于电磁暂态数值计算中。由理论分析可知,该数值积分方法具有非线性B-稳定性,即具有能量耗散性或非线性阻尼特性。算例结果表明,与现有的方法相比较,使用该方法进行电磁暂态计算,能够在不增加计算量的情况下,有效避免因突变情况导致的数值振荡。 展开更多
关键词 电磁暂态计算 数值积分方法 runge-kutta 数值振荡
下载PDF
A Class of Parallel Runge-Kutta Methods for Differential-Algebraic Systems of Index 2
19
作者 Fei Jinggao(Beijing Institute of Computer Application and Simulation Technology, 100854, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第3期64-75,共12页
A class of parallel Runge-Kutta Methods for differential-algebraic equations of index 2are constructed for multiprocessor system. This paper gives the order conditions and investigatesthe convergence theory for such m... A class of parallel Runge-Kutta Methods for differential-algebraic equations of index 2are constructed for multiprocessor system. This paper gives the order conditions and investigatesthe convergence theory for such methods. 展开更多
关键词 MULTIPROCESSOR SYSTEM PARALLEL algorithm runges-kutta method Differential-algebraic SYSTEM
下载PDF
Numerical Stability and Oscillations of Runge-Kutta Methods for Differential Equations with Piecewise Constant Arguments of Advanced Type
20
作者 Wang Qi Ma Fu-ming 《Communications in Mathematical Research》 CSCD 2013年第2期131-142,共12页
For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the nume... For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented. 展开更多
关键词 numerical solution runge-kutta method asymptotic stability OSCILLATION
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部