In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic...Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
As a key measure to comprehensively promote the strategy of rural revitalization,especially in the field of industrial prosperity,the integration of rural three industries is of great strategic significance.In this st...As a key measure to comprehensively promote the strategy of rural revitalization,especially in the field of industrial prosperity,the integration of rural three industries is of great strategic significance.In this study,entropy method and TOPSIS method were employed to calculate the comprehensive evaluation index of integration of three industries and the ideal development value respectively.The development status of integration of three rural industries was systematically evaluated,and the development trend of different regions was compared and analyzed.The results indicate that the development index of integration of three industries showed a steady growth trend,among which the development level of Jiangsu Province ranked first,followed by Hubei Province,while the development level of Shaanxi Province was relatively low.When analyzing the Level I indicators of integration of three rural industries,the contribution of industrial integration behavior exceeded the performance of industrial integration.Among the behavioral indicators of industrial integration,the weight of agricultural multi-functionality and service integration was relatively large,which plays a significant role in promoting the development of integration of three rural industries.The scores and growth rates of Jiangsu Province in increasing farmers income,increasing agricultural production and rural economic development were higher than those of other regions,while Shaanxi Province still had a certain gap in rural industrial integration indicators compared with Jiangsu Province and Hubei Province.In view of this,we came up with some strategic recommendations for further promoting the development of integration of three rural industries.展开更多
Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external train...Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and com...Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and communicative approach to improve students' linguistic competence and communicative competence.展开更多
The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data...The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.展开更多
The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field ...The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.展开更多
In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then th...In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then the field method for integrating these equations is given.Finally,an example illustrating the appli- cation of the integration method is given.展开更多
In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is a...In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.展开更多
A model based on the curvature integration method has been applied in an online plate leveling system. However, there are some shortcomings in the current leveling models. On the one hand, the models cannot deal with ...A model based on the curvature integration method has been applied in an online plate leveling system. However, there are some shortcomings in the current leveling models. On the one hand, the models cannot deal with the leveling process of plates with a random curvature distribution. On the other hand, the current models are suitable only for stable leveling processes and ignore the biting in and tailing out stages. This study presents a new plate-leveling model based on the curvature integration method, which can describe the leveling process of plates with random curvature distribution. Further, the model is solved in two cases in order to take the biting in and tailing out stages into consideration. The proposed model is evaluated by comparing with a plate leveling experiment. Finally, the leveling process of a plate with a wave bent is studied using the proposed model. It is found that the contact angles vary greatly during the biting in and tailing out stages. However, they are relatively steady during the 5 roller leveling stage. In addition, the contact angle of roller No. 2 is the smallest, which is close to 0. Roller leveling can effectively eliminate bending in the plate, but there are regions in the head and tail of the plate, where roller leveling is not effective. The non-leveling region length is about 2 times that of the roller space. This study proposes a quasi-static plate-leveling model, which makes it possible to analyze the dynamic straightening process using a curvature integration method. It also makes it possible to analyze the straightening process of a plate with random curvature distribution.展开更多
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficu...The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.展开更多
This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian sy...This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.展开更多
A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to t...A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to the fact that the matrix exponential is sparse. The presented method employs the sparsity of the matrix exponential to improve the original precise integration method. The merits are that the proposed method is suitable for large hyperbolic heat equations and inherits the accuracy of the original version and the good computational efficiency, which are verified by two numerical examples.展开更多
As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely use...As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported by ONR UMass Dartmouth Marine and UnderSea Technology(MUST)grant N00014-20-1-2849 under the project S31320000049160by DOE grant DE-SC0023164 sub-award RC114586-UMD+2 种基金by AFOSR grants FA9550-18-1-0383 and FA9550-23-1-0037supported by Michigan State University,by AFOSR grants FA9550-19-1-0281 and FA9550-18-1-0383by DOE grant DE-SC0023164.
文摘Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金Supported by Western Project of National Social Science Fund of China(23XJY013)Project of Social Science Foundation of Shaanxi Province(2022D032)。
文摘As a key measure to comprehensively promote the strategy of rural revitalization,especially in the field of industrial prosperity,the integration of rural three industries is of great strategic significance.In this study,entropy method and TOPSIS method were employed to calculate the comprehensive evaluation index of integration of three industries and the ideal development value respectively.The development status of integration of three rural industries was systematically evaluated,and the development trend of different regions was compared and analyzed.The results indicate that the development index of integration of three industries showed a steady growth trend,among which the development level of Jiangsu Province ranked first,followed by Hubei Province,while the development level of Shaanxi Province was relatively low.When analyzing the Level I indicators of integration of three rural industries,the contribution of industrial integration behavior exceeded the performance of industrial integration.Among the behavioral indicators of industrial integration,the weight of agricultural multi-functionality and service integration was relatively large,which plays a significant role in promoting the development of integration of three rural industries.The scores and growth rates of Jiangsu Province in increasing farmers income,increasing agricultural production and rural economic development were higher than those of other regions,while Shaanxi Province still had a certain gap in rural industrial integration indicators compared with Jiangsu Province and Hubei Province.In view of this,we came up with some strategic recommendations for further promoting the development of integration of three rural industries.
基金General Project of the 13th Five Year Plan for Education Science in Beijing in 2020“Key Elements of Vocational Education and Training System Construction in Higher Vocational Colleges”(Grant No.CCDB2020135)。
文摘Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
文摘Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and communicative approach to improve students' linguistic competence and communicative competence.
基金supported by the National Science and Technology Major Project of China(Grant No. 2011ZX05004-003,2011ZX05014-006-006)the National Key Basic Research Program of China(Grant No. 2013CB228602)the Natural Science Foundation of China(Grant No. 40974066)
文摘The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.
基金supported by the National Natural Science Foundation of China (Grant No. 50879090)
文摘The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.
基金The Project is supported by the National Natural Science Foundation of China
文摘In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then the field method for integrating these equations is given.Finally,an example illustrating the appli- cation of the integration method is given.
基金provided by the National Natural Science Foundation of China(No.51404272)the Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection(No.E21224)
文摘In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2013AA031302)National Natural Science Foundation of China(Grant No.51805024)
文摘A model based on the curvature integration method has been applied in an online plate leveling system. However, there are some shortcomings in the current leveling models. On the one hand, the models cannot deal with the leveling process of plates with a random curvature distribution. On the other hand, the current models are suitable only for stable leveling processes and ignore the biting in and tailing out stages. This study presents a new plate-leveling model based on the curvature integration method, which can describe the leveling process of plates with random curvature distribution. Further, the model is solved in two cases in order to take the biting in and tailing out stages into consideration. The proposed model is evaluated by comparing with a plate leveling experiment. Finally, the leveling process of a plate with a wave bent is studied using the proposed model. It is found that the contact angles vary greatly during the biting in and tailing out stages. However, they are relatively steady during the 5 roller leveling stage. In addition, the contact angle of roller No. 2 is the smallest, which is close to 0. Roller leveling can effectively eliminate bending in the plate, but there are regions in the head and tail of the plate, where roller leveling is not effective. The non-leveling region length is about 2 times that of the roller space. This study proposes a quasi-static plate-leveling model, which makes it possible to analyze the dynamic straightening process using a curvature integration method. It also makes it possible to analyze the straightening process of a plate with random curvature distribution.
基金financial support from Hunan Provincial Natura1 Science Foundation of China,Grant Number:02JJY2085,for this study
文摘The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Nos. 10902020 and 10721062)
文摘A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to the fact that the matrix exponential is sparse. The presented method employs the sparsity of the matrix exponential to improve the original precise integration method. The merits are that the proposed method is suitable for large hyperbolic heat equations and inherits the accuracy of the original version and the good computational efficiency, which are verified by two numerical examples.
基金supported by National Key Basic Research Program (973 Program, Grant No. 2011CB706804)National Natural Science Foundation of China (Grant No. 50805093)Science & Technology Commission of Shanghai Municipality, China (Grant No. 09QH1401500)
文摘As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.