A quasi_wavelet based numerical method was introduced for solving the evolution of the solutions of nonlinear partial differential Burgers' equations. The quasi wavelet based numerical method was used to discrete ...A quasi_wavelet based numerical method was introduced for solving the evolution of the solutions of nonlinear partial differential Burgers' equations. The quasi wavelet based numerical method was used to discrete the spatial deriatives, while the fourth_order Runge_Kutta method was adopted to deal with the temporal discretization. The calculations were conducted at a variety of Reynolds numbers ranging from 10 to unlimited large. The comparisons of present results with analytical solutions show that the quasi wavelet based numerical method has distinctive local property, and is efficient and robust for numerically solving Burgers' equations.展开更多
文摘A quasi_wavelet based numerical method was introduced for solving the evolution of the solutions of nonlinear partial differential Burgers' equations. The quasi wavelet based numerical method was used to discrete the spatial deriatives, while the fourth_order Runge_Kutta method was adopted to deal with the temporal discretization. The calculations were conducted at a variety of Reynolds numbers ranging from 10 to unlimited large. The comparisons of present results with analytical solutions show that the quasi wavelet based numerical method has distinctive local property, and is efficient and robust for numerically solving Burgers' equations.