期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Shear wave splitting analysis of local earthquakes from dense arrays in Shimian,Sichuan 被引量:2
1
作者 Sha Liu Baofeng Tian 《Earthquake Science》 2023年第1期52-63,共12页
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu... The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy. 展开更多
关键词 shear wave splitting polarization direction of the fast shear wave regional principal compressive stress dense array Citation:Liu s and Tian BF(2023).shear wave splitting analysis of local earthquakes from dense arrays in shimian sichuan.
下载PDF
Study on S wave splitting in Dayao earth-quake sequence with M=6.2 and M=6.1 in Yunnan in 2003 被引量:1
2
作者 华卫 刘杰 +1 位作者 陈章立 郑斯华 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第4期380-396,共17页
The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in ... The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in 2003 using cross-correlation coefficient method, after determining the high-resolution hypocentral locations of the earthquake sequences using the double-difference earthquake location algorithm. The results indicated that ① The phenomena of S wave splitting are obvious in the two earthquake sequences, and the average polarization directions of fast wave in most stations are almost consistent with regional maximum horizontal compressive stress direction except the station Santai. There are bimodal fast directions in the polarization directions at station Santai and the mean polarization direction is N80°E, indicating an inconsistent phenomenon referred to regional maximum horizontal compressive stress direction. ② There is no apparent relation between delay time and focal depth in the sequences, but the polarization direction show different character in different delay time range. ③ The comparison of S wave splitting results in the two earthquake sequences show that the polarization direction in M=6.2 earthquake sequence is more scattered and its average fast direction is 20° larger than that of M=6.1 sequence, and the delay times between two sequences show a little difference. ④ The spatial variation in S wave splitting polarization direction may be due to the stress disturbance imposed by the M=6.2 and the M=6.1 mainshocks on regional background stress field. 展开更多
关键词 s wave splitting cross-correlation coefficient method polarization direction delay time
下载PDF
Inversion of teleseismic waves at Shidao Seismographic Station 被引量:1
3
作者 RUAN Aiguo LI Jiabiao +2 位作者 HAO Tianyao WU Qingju XU Yi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第5期63-73,共11页
Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inv... Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inversion approaches. The rotated correction function is applied to analyzing high quality SeS records from five earthquakes at distance of 25°-35° to obtain shear wave splitting parameters of the lithosphere. The result from the deepest earthquake among the five events indicates that the polarization of the fast shear wave is N94°E, which means the direction of extensional stress or the moving of the upper mantle mass in Xisha Islands is nearly west to east and confirms that the crust in this region is a transitional one and the driving force beneath the crust is from the moving mass consistent with the Eurasian plate. The anisotropy effective thickness is estimated about 100 km based on the time delay of 1.3 s between the fast and slow shear waves. The receiver function is applied to analyzing high quality P wave records from nine earthquakes at distance of 20°- 60° to obtain the vertical distribution pattern of shear wave velocity beneath the station. The result indicates that the crust could be divided into three layers: the uppermost crust (5 km above) is a velocity gradient zone consisting of several small layers, where the shear wave velocity increases from 1.5 to 3.5 km/s gradually; the 5 - 16 km depth interval also consiss of several small layers of which the mean velocity is about 3.8 km/s; and the lower crust ( 16.0 - 26. 5 km) is an obvious low velocity layer with a velocity of about 3.6 km/s. The buried depth of the Moho discontinuity is 26.5 kin, the mean velocity of the layers beneath the Moho is about 4.7 km/s and there is an obvious low velocity layer just beneath the Moho. Moreover, analysis of the arrival time of converted waves and the swinging variation of velocity around the initial model suggests that smaller layers in the model maybe are not reliable but the low velocity layer between 16 and 26.5 km maybe is the real one that implies the plasticity of the lower crust. 展开更多
关键词 south China sea s wave splitting receiver function s wave velocity structure waveform inversion
下载PDF
Application of Seismic Anisotropy Caused by Fissures in Coal Seams to the Detection of Coal-bed Methane Reservoirs 被引量:2
4
作者 LIU Mei GOU Jingwei +1 位作者 YU Guangming LIN Jiandong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期425-428,共4页
Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the ... Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure. 展开更多
关键词 coal-bed methane coal-seam fissure ANIsOTROPY splitting of s wave
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部