Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamar...Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamard's integral inequality are generalized.展开更多
In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Final...In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.展开更多
In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality...In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality in two variables. In addition, six other inequalities are derived from it for some refinements. Finally, this paper shows some examples that these inequalities are able to be applied to some special means.展开更多
The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is intr...The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is introduced. Next a new identity is also established. Finally, by this identity and H?lder’s inequality, some new Simpson type for the product of strongly extended s-convex function are obtained.展开更多
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
In this note, we discuss the definition of the S1-convexity Phenomenon. We first make use of some results we have attained for?? in the past, such as those contained in [1], to refine the definition of the phenomenon....In this note, we discuss the definition of the S1-convexity Phenomenon. We first make use of some results we have attained for?? in the past, such as those contained in [1], to refine the definition of the phenomenon. We then observe that easy counter-examples to the claim extends K0 are found. Finally, we make use of one theorem from [2] and a new theorem that appears to be a supplement to that one to infer that? does not properly extend K0 in both its original and its revised version.展开更多
By applying the q-derivative, we introduce two new subclasses of p-valent functions with positive coefficients. By means of the well-known Jack’s lemma, some inequalities related to starlike, convex and close-to-conv...By applying the q-derivative, we introduce two new subclasses of p-valent functions with positive coefficients. By means of the well-known Jack’s lemma, some inequalities related to starlike, convex and close-to-convex functions are also obtained.展开更多
In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized mo...In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.展开更多
基金Supported by the key scientific and technological innovation team project in shaanxi province(2014KCT-15)the Foundations of Shaanxi Educational committee(NO.18Jk0152)
文摘Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamard's integral inequality are generalized.
文摘In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
基金The Doctoral Programs Foundation(20113401110009)of Education Ministry of ChinaNatural Science Research Project(2012kj11)of Hefei Normal University+1 种基金Universities Natural Science Foundation(KJ2013A220)of Anhui ProvinceResearch Project of Graduates Innovation Fund(2014yjs02)
文摘In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.
文摘In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality in two variables. In addition, six other inequalities are derived from it for some refinements. Finally, this paper shows some examples that these inequalities are able to be applied to some special means.
文摘The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is introduced. Next a new identity is also established. Finally, by this identity and H?lder’s inequality, some new Simpson type for the product of strongly extended s-convex function are obtained.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
文摘In this note, we discuss the definition of the S1-convexity Phenomenon. We first make use of some results we have attained for?? in the past, such as those contained in [1], to refine the definition of the phenomenon. We then observe that easy counter-examples to the claim extends K0 are found. Finally, we make use of one theorem from [2] and a new theorem that appears to be a supplement to that one to infer that? does not properly extend K0 in both its original and its revised version.
文摘By applying the q-derivative, we introduce two new subclasses of p-valent functions with positive coefficients. By means of the well-known Jack’s lemma, some inequalities related to starlike, convex and close-to-convex functions are also obtained.
文摘In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.