期刊文献+
共找到193,306篇文章
< 1 2 250 >
每页显示 20 50 100
Nitrogen and phosphorus co-doped activated carbon induces high density Cu^(+)active center for acetylene hydrochlorination
1
作者 Fei Li Xuemei Wang +3 位作者 Pengze Zhang Qinqin Wang Mingyuan Zhu Bin Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期193-199,共7页
This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)w... This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst. 展开更多
关键词 Acetylene hydrochlorination Cu-based catalysts Catalytic activity Heterogeneous catalysis N and P co-doped
下载PDF
Structure distortion, optical and electrical properties of ZnO thin films co-doped with Al and Sb by sol-gel spin coating 被引量:1
2
作者 钟文武 刘发民 +3 位作者 蔡鲁刚 周传仓 丁芃 张嬛 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期515-519,共5页
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r... ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm. 展开更多
关键词 ZnO thin films co-doped with Al and sb sol-gel spin-coating method structure distortion optical and electrical properties
下载PDF
Structure, photocatalytic and antibacterial activity study of Meso porous Ni and S co-doped TiO2 nano material under visible light irradiation 被引量:3
3
作者 K.V.Divya Lakshmi T.Siva Rao +2 位作者 J.Swathi Padmaja I.Manga Raju M.Ravi Kumar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1630-1641,共12页
Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic an... Undoped and Ni–S co-doped mesoporous TiO2 nano materials were synthesized by using sol–gel method.The characteristic features of as prepared catalyst samples were investigated using various advanced spectroscopic and analytical techniques.The characterization results of the samples revealed that all the samples exhibited anatase phase(XRD),decreasing band gap(2.68 eV)(UV–Vis-DRS),small particle size(9.2 nm)(TEM),high surface area(142.156 m^2·g^-1)(BET),particles with spherical shape and smooth morphology(SEM);there is a frequency shift observed for co-doped sample(FT-IR)and the elemental composition electronic states and position of the doped elements(Ni and S)in the TiO2 lattice analyzed by XPS and EDX.These results supported the photocatalytic degradation of Bismarck Brown Red(BBR)achieved with in 110 min and also exhibited the antibacterial activity on Staphylococcus aureus(MTCC-3160),Pseudomonas fluorescence(MTCC-1688)under visible light irradiation. 展开更多
关键词 sol–gel Ni–s co-doped TIO2 Photocatalysis under visible light Degradation of Bismarck BROWN Red Antibacterial activity
下载PDF
Revisiting N,S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors:The manipulation of internal electric field 被引量:1
4
作者 Shuli Li Jinqiang Zhang +2 位作者 Yanan Li Pengxiang Fan Mingbo Wu 《Nano Research Energy》 2024年第1期10-18,共9页
Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials.However,the underlying mechanism governing the performance enhancement remains undisclosed.Herein,we fab... Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials.However,the underlying mechanism governing the performance enhancement remains undisclosed.Herein,we fabricated N/S co-doped carbon beaded fibers(S-N-CBFs),which exhibited glorious rate performance and durableness in Na+storage,showcasing no obvious capacity decay even after 3500 cycles.Furthermore,when used as anodes in sodium-ion capacitors,the S-N-CBFs delivered exceptional results,boasting a high energy density of 225 Wh·kg^(-1),superior power output of 22500 W·kg^(-1),and outstanding cycling stability with a capacity attenuation of merely 0.014%per cycle after 4000 cycles at 2 A·g^(-1).Mechanistic investigations revealed that the incorporation of both pyridinic N and pyrrolic N into the carbon matrix of S-N-CBFs induced internal electric fields(IEFs),with the former IEF being stronger than the latter,in conjunction with the doped S atom.Density functional theory calculations further unveiled that the intensity of the IEF directly influenced the adsorption of Na+,thereby resulting in the exceptional performances of S-N-CBFs as sodium-ion storage materials.This work uncovers the pivotal role of IEF in regulating the electronic structure of carbon materials and enhancing their Na^(+)storage capabilities,providing valuable insights for the development of more advanced electrode materials. 展开更多
关键词 N/s co-doped carbon internal electric field Na^(%PLUs%)adsorption sodium-ion storage sodium-ion capacitors
原文传递
N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media 被引量:2
5
作者 Juan Nong Min Zhu +4 位作者 Kun He Aosheng Zhu Pu Xie Minzhi Rong Mingqiu Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期220-226,共7页
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only sh... Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline medium,and become less effective in acidic environment.We believe that an appropriate combination of both ionic and electronic transport path,and well dopant distribution of doped carbon-based materials would help to realize high ORR performance un-der both acidic and alkaline cond让ions.Accordingly,a nitrogen and sulfur co-doped carbon framework with hierarchical through-hole structure is fabricated by morphology-controlled solid-state pyrolysis of poly(aniline-co-2-ami no thiophenol)foam.The uniform high concentrations of nitrogen and sulfur,high intrinsic conductivity,and integrated three dimensional ionic and electronic transfer passageways of the 3D porous structure lead to synergistic effects in catalyzing ORR.As a result,the limiting current density of the carbonized poly(aniline-co-2-aminothiophenol)foam is equivalent to commercial Pt/C in acidic environment,and twice the latter in alkaline medium. 展开更多
关键词 3D N/s-doped CARBON frameworks Oxygen reduction reaction(ORR) Morphology-retaining PYROLYsIs ACIDIC medium
下载PDF
Significantly improved near-field communication antennas based on novel Ho^(3+)and Co^(2+)ions co-doped Ni-Zn ferrites
6
作者 Pao Yang Zhiqing Liu +2 位作者 Hongbin Qi Xiuli Fu Zhijian Peng 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第3期293-309,共17页
In near-field communication(NFC)antennas,soft magnetic ferrites are usually applied as a substrate to reduce eddy current loss and increase magnetic field coupling.For this purpose,the applied ferrites are required to... In near-field communication(NFC)antennas,soft magnetic ferrites are usually applied as a substrate to reduce eddy current loss and increase magnetic field coupling.For this purpose,the applied ferrites are required to have high permeability and saturation magnetization together with low magnetic loss and dielectric loss.However,for most soft magnetic ferrites,it is difficult to meet all the requirements.Herein novel Ni-Zn ferrite ceramics co-doped by Ho^(3+)and Co^(2+)ions with chemical formula Ni_(0.5-x)Zn_(0.5)Ho_(0.02)Co_(x)Fe_(1.98)O_(4)(x=0-0.2)were designed and prepared to balance these needs on the basis of molten salt synthesis with metal nitrates as raw materials and potassium hydroxide(KOH)as the precipitation agent and molten salt precursor.After the substitution of Ho^(3+),the saturation magnetization and initial permeability decrease,but with further doping of Co^(2+),the saturation magnetization gradually increases,while the initial permeability continues to decrease.When x=0.1,the sample will have the lowest dielectric constant,magnetic and dielectric loss,as well as the highest Curie temperature(305℃).Moreover,the acquired Ni-Zn ferrites have been applied simulatively in NFC antennas,revealing that the device manufactured with the optimal Ni_(0.4)Zn_(0.5)Ho_(0.02)Co_(0.1)Fe_(1.98)O_(4)ferrite ceramics would have significantly improved performance at 13.56 MHz with low leakage and long transmit distance of magnetic field.Therefore,the Ni_(0.4)Zn_(0.5)Ho_(0.02)Co_(0.1)Fe_(1.98)O_(4)ferrite ceramics would be a good candidate for NFC antenna substrates. 展开更多
关键词 electromagnetic properties co-dopING microstrip antennas Ni-Zn ferrite
原文传递
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
7
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoseTe N F co-doped honeycomb carbon skeleton sodium-ion batteries sodium-ion hybrid capacitor
下载PDF
Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction
8
作者 Fangfang Chang Panpan Su +5 位作者 Utsab Guharoy Runping Ye Yanfu Ma Huajun Zheng Yi Jia Jian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期349-354,共6页
The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However,the explorat... The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However,the exploration of N, S co-doped carbon with well-defined active sites and hierarchical porous structures are still limited. In this study, we prepared a series of edge-enriched N, S co-doped carbon materials through pyrolysis of thiourea(TU) encapsulated in zeolitic imidazolate frameworks(TU@ZIF) composites,which delivered very good oxygen reduction reaction(ORR) performance in alkaline medium with onset potential of 0.94 V vs. reversible hydrogen electrode(RHE), good stability and methanol tolerance. Density functional theory(DFT) calculations suggested that carbon atoms adjacent to N and S are probable active sites for ORR intermediates in edge-enriched N, S co-doped carbon materials because higher electron density can enhance O_(2)adsorption, lower formation barriers of intermediates, improving the ORR performance comparing to intact N, S co-doped carbon materials. This study might provide a new pathway for improving ORR activity by the integration engineering of edge sites, and electronic structure of heteroatom doped carbon electrocatalysts. 展开更多
关键词 Porosity engineering N s co-doped carbon materials Hierarchical porous carbon Edge-enriched carbon Oxygen reduction reaction DFT calculation
原文传递
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:4
9
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles N s co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:3
10
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 s P co-doping Nise_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
下载PDF
Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over-20°C-60°C
11
作者 Siqi Guan Lin Tao +9 位作者 Pei Tang Ruopian Fang Huize Wu Nan Piao Huicong Yang Guangjian Hu Xin Geng Lixiang Li Baigang An Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期449-457,共9页
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit... Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability. 展开更多
关键词 Anion-cation co-doping Wide temperature operation Ni-richlayered cathode Phase transition surface/interface
下载PDF
Peroxymonosulfate activation by Fe-N-S co-doped tremella-like carbocatalyst for degradation of bisphenol A: Synergistic effect of pyridine N, Fe-Nx, thiophene S 被引量:1
12
作者 Wenjin Chen Lele Lei +6 位作者 Ke Zhu Dongdong He Hongmei He Xiulan Li Yumeng Wang Jin Huang Yushi Ai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第7期213-228,共16页
Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good pros... Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good prospect for effective elimination of recalcitrant contaminants in water.Herein,considering the problem about the leaching of iron ions and the optimization of heteroatoms doping,the iron,nitrogen and sulfur co-doped tremellalike carbon catalyst(Fe-NS@C)was rationally designed using very little iron,S-C_(3)N_(4) and low-cost chitosan(CS)via the impregnation-calcination method.The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA(20 mg/L)by activating PMS with the high kinetic constant(1.492 min^(−1))in 15 min.Besides,the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference,but also maintained an excellent degradation efficiency on different pollutants.Impressively,increased S-C_(3)N_(4) doping amount modulated the contents of different N species in Fe-NS@C,and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing SC_(3)N_(4) contents,verifying pyridine N and Fe-Nx as main active sites in the system.Meanwhile,thiophene sulfur(C-S-C)as active sites played an auxiliary role.Furthermore,quenching experiment,EPR analysis and electrochemical test proved that surface-bound radicals(·OH and SO_(4)^(·−))and non-radical pathways worked in the BPA degradation(the former played a dominant role).Finally,possible BPA degradation route were proposed.This work provided a promising way to synthesize the novel Fe,N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability. 展开更多
关键词 Iron Nitrogen and sulfur co-doped PEROXYMONOsULFATE Bisphenol A Pyridine N Fe-N_(x)sites Thiophene s
原文传递
Direct observation of the distribution of impurity in phosphorous/boron co-doped Si nanocrystals
13
作者 李东珂 韩俊楠 +7 位作者 孙腾 陈佳明 Etienne Talbot Rémi Demoulin 陈王华 皮孝东 徐骏 陈坤基 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期454-458,共5页
Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomogra... Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO_(2) multilayers.Compared with phosphorous singly doped Si nanocrystals,it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved.Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy,which also reduces the formation energy of phosphorous in Si nanocrystals.The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals,which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission. 展开更多
关键词 si nanocrystals phosphorous and boron co-dopING impurity distribution
下载PDF
Improving the electrocatalytic activity of Fe,N co-doped biochar for polysulfide by regulation of N-C and Fe-N-C electronic configurations
14
作者 Jingchun Sun Jindiao Guan +4 位作者 Suqing Zhou Jiewei Ouyang Nan Zhou Chunxia Ding Mei’e Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2421-2431,共11页
The conversion of agricultural residual biomass into biochar as a sulfur host material for Li-S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization.However,the... The conversion of agricultural residual biomass into biochar as a sulfur host material for Li-S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization.However,the large-scale application of pristine biochar is hindered by its low electrical conductivity and limited electrocatalytic sites.This paper addressed these challenges via the construction of Fe-N co-doped biochar(Fe-NOPC)through the copyrolysis of sesame seeds shell and ferric sodium ethylenediaminetetraacetic acid(NaFeEDTA).During the synthesis process,NaFeEDTA was used as an extra carbon resource to regulate the chemical environment of N doping,which resulted in the production of high contents of graphitic,pyridinic,and pyrrolic N and Fe-Nx bonds.When the resulting Fe-NOPC was used as a sulfur host,the pyridinic and pyrrolic N would adjust the surface electron structure of biochar to accelerate the electron/ion transport,and the electropositive graphitic N could be combined with sulfur-related species via electrostatic attraction.Fe-Nx could also promote the redox reaction of lithium polysulfides due to the strong Li-N and S-Fe bonds.Benefiting from these advantages,the resultant Fe-NOPC/S cathode with a sulfur loading of 3.8 mg·cm^(-2)delivered an areal capacity of 4.45 mAh·cm^(-2)at 0.1C and retained a capacity of 3.45 mAh·cm^(-2)at 1C.Thus,this cathode material holds enormous potential for achieving energy-dense Li-S batteries. 展开更多
关键词 sesame seeds shell COPYROLYsIs BIOCHAR Fe-N co-doping Li-s batteries
下载PDF
Microbial synthesis of N, P co-doped carbon supported PtCu catalysts for oxygen reduction reaction
15
作者 Shaohui Zhang Suying Liu +6 位作者 Jingwen Huang Haikun Zhou Xuanzhi Liu Pengfei Tan Haoyun Chen Yili Liang Jun Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期486-495,共10页
Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N... Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N,P co-doped carbon(PtCu/NPC) were prepared by microbial-sorption and carbonization-reduction.Among them,PtCu/NPC-700 ℃ exhibits excellent catalytic performance for ORR with a mass activity of 0.895 A mg_(pt)^(-1)(@0.9 V) which is 8.29 folds of commercial Pt/C.Additionally,the ECSA and MA of PtCu/NPC-700℃ only decrease by 14.2% and 18.7% respectively,while Pt/C decreases by 35.2% and 52.8% after 10,000 cycles of ADT test.Moreover,the PtCu/NPC-700℃ catalyst emanates a maximum power density of 715 mW cm^(-2) and only 11.1% loss of maximum power density after 10,000 ADTs in single-cell test,indicating PtCu/NPC-700℃ also manifests higher activity and durability in actual single-cell operation than Pt/C.This research provides an easy and novel strategy for developing highly active and durable Pt-based alloy catalyst. 展开更多
关键词 Microbial synthesis N P co-doping PtCu catalyst Oxygen reduction reaction
下载PDF
Construction of N,O co-doped carbon anchored with Co nanoparticles as efficient catalyst for furfural hydrodeoxygenation in ethanol
16
作者 Hui Yang Hao Chen +7 位作者 Wenhua Zhou Haoan Fan Chao Chen Yixuan Sun Jiaji Zhang Sifan Wang Teng Guo Jie Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期195-202,I0006,共9页
Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O c... Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship. 展开更多
关键词 N O co-doped carbon Electronic properties FURFURAL 2-METHYLFURAN In-situ hydrodeoxygenation
下载PDF
Improved Corrosion Behavior of Biodegradable Mg-4Zn-1Mn Alloy Modified by Sr/F co-doped CaP Micro-arc Oxidation Coatings
17
作者 Weirong LI Yanfang LI +7 位作者 Qian LI Xuan XIONG Fangfei LIU Ronghui LI Heng LI Dong PANG Jia LU Xuan ZHANG 《Research and Application of Materials Science》 2023年第2期1-8,共8页
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi... The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate. 展开更多
关键词 Biodegradable Mg alloys Mg-4Zn-1Mn alloy Micro-arc oxidation sr/F co-doped CaP coatings
下载PDF
Magnetically separated and N, S co-doped mesoporous carbon microspheres for the removal of mercury ions 被引量:5
18
作者 Ming-Xian Liu Xiang-Xiang Deng +4 位作者 Da-Zhang Zhu Hui Duan Wei Xiong Zi-Jie Xu Li-Hua Gan 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第5期795-800,共6页
Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resor... Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater. 展开更多
关键词 N s co-doped mesoporous carbonmicrospheres MagnetiteAdsorption Mercury ion Magnetic separation
原文传递
Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation 被引量:17
19
作者 Cheng-Zhi Ke Fang Liu +6 位作者 Zhi-Ming Zheng He-He Zhang Meng-Ting Cai Miao Li Qi-Zhang Yan Hui-Xin Chen Qiao-Bao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1347-1356,共10页
Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge ... Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge for stable battery operation.To mitigate these issues simultaneously,we propose a"double carbon synergistic encapsulation"strategy,namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional(2D)carbon sheet dual encapsulate Si nanoparticles(denoted as 2D NPC/C@Si).This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport,which promotes the formation of a stable solid electrolyte interphase film during cycling.Through structural advantages,the resulting 2 D NPC/C@Si electrode demonstrates a high reversible capacity of592 mAh·g^(-1) at 0.2 A·g^(-1) with 90.5%excellent capacity retention after 100 cycles,outstanding rate capability(148 mAh·g^(-1) at 8 A·g^(-1)),and superior long-term cycling stability(326 mAh·g^(-1) at 1 A·g^(-1) for 500 cycles,86%capacity retention).Our findings elucidate the development of high-performance Si@C composite anodes for advanced LTBs. 展开更多
关键词 silicon@carbon composites Anode Nitrogen/phosphorus co-doped carbon Lithium-ion battery
原文传递
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery
20
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N s co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部