Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr...Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.展开更多
In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2F...In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.展开更多
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear...The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.展开更多
An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the w...An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.展开更多
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of...Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.展开更多
Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on pa...Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on particular point was analyzed. Conclusion is obtained that obviously conservative to evaluate open hole and joint strength by hole-edge stress. Based on these, high and nor-mal temperature strength test of typical circular shaft was completed, proving that comprehensive joint performance can be significantly improved by appropriately optimized design.展开更多
A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating wit...A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.展开更多
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precu...Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.展开更多
Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new conte...Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry.展开更多
基金the financial support from the National Natural Science Foundation of China(No.91963118)the 111 Project(No.B13013)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,China(No.2020004)。
文摘Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.
基金supported by the Programs of National 973(2011CB935900)NSFC(21231005)+1 种基金MOE(B12015 and 113016A)the Fundamental Research Funds for the Central Universities
文摘In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.
基金financial support from the National Key Research and Development Programme (2018YFC1801901)the National Natural Science Foundation of China (21808115, 22108309, 52172093)+1 种基金the Key Research and Development Project (Major Project of Scientific and Technological Innovation) of Shandong Province (2020CXGC010308)the Taishan Scholar Program of Shandong (ts20190919)。
文摘The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.
文摘An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject (2008AA030502) supported by the National High-Tech Research and Development Program of China
文摘Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material.
文摘Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on particular point was analyzed. Conclusion is obtained that obviously conservative to evaluate open hole and joint strength by hole-edge stress. Based on these, high and nor-mal temperature strength test of typical circular shaft was completed, proving that comprehensive joint performance can be significantly improved by appropriately optimized design.
基金Project(11204090)supported by the National Natural Science Foundation of ChinaProject(2013KJCX0050)supported by the Department of Education of Guangdong Province+6 种基金ChinaProjects(2014B0404040672014A0404010052015A0404040432015A090905003201508030033)supported by the Scientific and Technological Plan of Guangdong Province and Guangzhou CityChina
文摘A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.
基金This work was financially supported by the National Natural Science Foundation of China (No.50134020)
文摘Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.
文摘Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry.