Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
目的对D19S433基因座稀有等位基因8.2,用分子生物学方法,验证其命名,对突变发生的位置进行确认和分析。方法设计引物对目的基因进行扩增和测序,验证常规命名法。将测序所得序列与D19S433基因座的基础序列进行比对分析。结果Goldeneye DN...目的对D19S433基因座稀有等位基因8.2,用分子生物学方法,验证其命名,对突变发生的位置进行确认和分析。方法设计引物对目的基因进行扩增和测序,验证常规命名法。将测序所得序列与D19S433基因座的基础序列进行比对分析。结果Goldeneye DNA 20A和AGCU EX22亲子鉴定系统联合检测,相互比对,确定在检案中发现的分型标准物之外(Off⁃ladder,OL)的等位基因为D19S433基因座的稀有等位基因。经常规漂移校正计算该等位基因为8.2。测序后分析其重复序列确定该等位基因为8.2无误。结论对STR分型中发现的稀有等位基因进行测序,分析其重复序列,可以准确的对其进行命名,确定稀有等位基因突变的位置,丰富中国人群STR数据信息。展开更多
High-performance Al Ga N/Ga N high electron mobility transistors(HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition(MOCVD) with a selective non-planar n-type Ga N source/drain(S/D) re...High-performance Al Ga N/Ga N high electron mobility transistors(HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition(MOCVD) with a selective non-planar n-type Ga N source/drain(S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance(gm) of 247 m S/mm. The current gain cutoff frequency f T and maximum oscillation frequency f MAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard Ga N HEMT on silicon substrate, the fTand fMAXis 50% and 52% higher, respectively.展开更多
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘目的对D19S433基因座稀有等位基因8.2,用分子生物学方法,验证其命名,对突变发生的位置进行确认和分析。方法设计引物对目的基因进行扩增和测序,验证常规命名法。将测序所得序列与D19S433基因座的基础序列进行比对分析。结果Goldeneye DNA 20A和AGCU EX22亲子鉴定系统联合检测,相互比对,确定在检案中发现的分型标准物之外(Off⁃ladder,OL)的等位基因为D19S433基因座的稀有等位基因。经常规漂移校正计算该等位基因为8.2。测序后分析其重复序列确定该等位基因为8.2无误。结论对STR分型中发现的稀有等位基因进行测序,分析其重复序列,可以准确的对其进行命名,确定稀有等位基因突变的位置,丰富中国人群STR数据信息。
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61401373)the Fundamental Research Funds for Central Universities,China(Grant No.XDJK2013B004)the Research Fund for the Doctoral Program of Southwest University,China(Grant No.SWU111030)
文摘High-performance Al Ga N/Ga N high electron mobility transistors(HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition(MOCVD) with a selective non-planar n-type Ga N source/drain(S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance(gm) of 247 m S/mm. The current gain cutoff frequency f T and maximum oscillation frequency f MAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard Ga N HEMT on silicon substrate, the fTand fMAXis 50% and 52% higher, respectively.