The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-bas...The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-based oxides,such as poor conductivity and dissolution in electrolytes,this study introduces vacuum S/N doping to fabricate V_(2)O_(3)/VO_(2)@S/N-C nanofibers,improving the cycling stability and enhancing the capacity.The V_(2)O_(3)/VO_(2)@S/N-C electrode exhibits exceptional cyclic stability,retaining a capacity of 133.3 m A h g^(-1)after 30,000 cycles at a high current density of 100 A g^(-1)and a capacity retention of 81.8%after 150,000 cycles at 200 A g^(-1).Characterizations using ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy reveal co-intercalation of H^(+)and Zn^(2+)in the V_(2)O_(3)/VO_(2)@S/N-C electrode.Due to the presence of S_(2)^(2-),more phases changed to V_(10)O_(24).12H_(2)O,making the V_(2)O_(3)/VO_(2)@S/N-C electrode better reversible.By elucidating the zinc storage mechanism and demonstrating the stable performance of the doped electrode,this work contributes valuable insights into the optimization of the electrode materials for future energy storage solutions.展开更多
The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the ...The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.展开更多
Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
基金financially supported by the Natural Science Foundation of China (Grant No. 52272063)the Jiangxi Provincial Natural Science Foundation (No. 20224BAB214037, 20232BAB204022, 20232BAB204019)。
文摘The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-based oxides,such as poor conductivity and dissolution in electrolytes,this study introduces vacuum S/N doping to fabricate V_(2)O_(3)/VO_(2)@S/N-C nanofibers,improving the cycling stability and enhancing the capacity.The V_(2)O_(3)/VO_(2)@S/N-C electrode exhibits exceptional cyclic stability,retaining a capacity of 133.3 m A h g^(-1)after 30,000 cycles at a high current density of 100 A g^(-1)and a capacity retention of 81.8%after 150,000 cycles at 200 A g^(-1).Characterizations using ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy reveal co-intercalation of H^(+)and Zn^(2+)in the V_(2)O_(3)/VO_(2)@S/N-C electrode.Due to the presence of S_(2)^(2-),more phases changed to V_(10)O_(24).12H_(2)O,making the V_(2)O_(3)/VO_(2)@S/N-C electrode better reversible.By elucidating the zinc storage mechanism and demonstrating the stable performance of the doped electrode,this work contributes valuable insights into the optimization of the electrode materials for future energy storage solutions.
文摘The seismic data from western China is very noisy. Two main reasons are static corrections and low S/N ratio problems. By seismic data processing and study these problems have been effectively solved by iterating the static corrections and improving the S/N ratio for pre-stack seismic data. Suppression and elimination of various other distortions has been implemented as well. Due to the fact that the S/N ratio is improved, the resolution of the seismic data is also improved.
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.