期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
极大S^2NS阵的分支数与非零元个数 被引量:1
1
作者 尤利华 邵嘉裕 《高校应用数学学报(A辑)》 CSCD 北大核心 2005年第4期424-440,共17页
一个实方阵A称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同.若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵.论文证明了当n≥5时,所有n阶极大S2NS阵的分... 一个实方阵A称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同.若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵.论文证明了当n≥5时,所有n阶极大S2NS阵的分支个数所成之集合Fn为{1,…,n}\{2},而所有n阶极大S2NS阵的非零元个数所成之集合S(n),除去2n+1到3n-4间的一段外,也得到了完全确定. 展开更多
关键词 符号 极大 S^2ns 矩阵 有向图
下载PDF
关于极大S^2NS阵的一个注记
2
作者 尤利华 邵嘉裕 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第1期113-122,共10页
一个实方阵A称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同.若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵.设所有n阶极大S2NS阵的非零元个数所成之... 一个实方阵A称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同.若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵.设所有n阶极大S2NS阵的非零元个数所成之集合为S(n),Z4(n)={1/2n(n-1)+4,…,1/2n(n+1)-1},除了2n+1到3n一4间的一段和Z4(n)外,S(n)得到了完全确定.本文将用图论方法证明Z4(n)∩S(n)=(?). 展开更多
关键词 符号 极大 S^2ns 矩阵 有向图
下载PDF
The S^2NS Digraphs and the Cycle Linear System of a Digraph
3
作者 Jian-guo Qian, Sheng-jun MiaoDepartment of Mathematics, Xiamen University, Xiamen 361005, ChinaDepartment of Mathematics and Physics, Weihai Vocational College, Weihai 264200, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第2期333-340,共8页
It is known that the study of the qualitative properties of a matrix A (which depend only on the sign pattern of A) can be turned into the study of the graph theoretical properties of the signed digraph S(A). The unde... It is known that the study of the qualitative properties of a matrix A (which depend only on the sign pattern of A) can be turned into the study of the graph theoretical properties of the signed digraph S(A). The underlying digraph of the signed digraph of a strong sign nonsingular matrix (abbreviated S NS matrix) with a negative main diagonal is called an S NS digraph. In the study of S NS digraphs, the minimal forbidden configuration (or MFC for short) plays an important role. Three (classes of) MFS's were constructed by Thomassen, Brualdi and Shader, and Shao. In this paper, we show that a digraph D is an S2NS digraph if and only if its 'cycle linear system' is solvable. This simplifies a parallel result obtained by Shao and Hu. As an application of the result, a graph theoretical characterization for a digraph to be an S NS digraph is given. At the end of the paper, we construct infinitely many new MFCs to show that for each even number k(k>0), there are basic MFCs with fc terminal components (here, with no loss of generality, we assume that the number of the initial components of a digraph is no less than that of its terminal components throughout the following). 展开更多
关键词 MATRIX S^2 ns digraph Cycle linear system
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部