We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the...We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping.One type is the four-dimensional point defects.展开更多
Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of thes...Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of these measures over time remains understudied.This research explores the structural components of the Center for Epidemiological Studies Depression Scale(CES-D)and examines its consistency across various living environments and temporal stability in a cohort of Chinese teenagers.Method:In the initial phase,1,042 adolescents furnished demographic details and undertook the CES-D assessment.After a three-month interval,967 of these participants repeated the CES-D evaluation.The study employed Confirmatory factor analysis(CFA)to scrutinize the scale’s structural integrity.We investigated factorial invariance by conducting a twopronged CFA:one comparing urban vs.rural backgrounds,and another contrasting the results from the initial assessment with those from the follow-up.Results:The CES-D demonstrated adequate reliability in both rural and urban high school student samples.The preliminary four-factor model applied to the CES-D demonstrated a good fit with the collected data.Invariance tests,including multigroup analyses comparing rural and urban samples and longitudinal assessments,confirmed the scale’s invariance.Conclusions:The results suggest that the CES-D serves as a reliable instrument for evaluating depressive symptoms among Chinese adolescents.Its applicability is consistent across different living environments and remains stable over time.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtaine...This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.展开更多
In a recent paper [Phys. Rev. A 76 042313 (2007)], Sainz and Bjork introduced an entanglement invariant ε under evolution for a system of four qubits interacting through two isolated Jaynes-Cummings Hamiltonians. T...In a recent paper [Phys. Rev. A 76 042313 (2007)], Sainz and Bjork introduced an entanglement invariant ε under evolution for a system of four qubits interacting through two isolated Jaynes-Cummings Hamiltonians. This paper proves that this entanglement invariant ε is closely connected with the linear entropy between two independent subsystems.展开更多
Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifth...Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifthgeneration(5G)cellular networks.For the formal reason,the study solves the physical network of the mobile base station for the prediction of the best characteristics to develop an enhanced network with the help of graph theory.Any number that can be uniquely calculated by a graph is known as a graph invariant.During the last two decades,innumerable numerical graph invariants have been portrayed and used for correlation analysis.In any case,no efficient assessment has been embraced to choose,how much these invariants are connected with a network graph.This paper will talk about two unique variations of the hexagonal graph with great capability of forecasting in the field of optimized mobile base station topology in setting with physical networks.Since K-banhatti sombor invariants(KBSO)and Contrharmonic-quadratic invariants(CQIs)are newly introduced and have various expectation characteristics for various variations of hexagonal graphs or networks.As the hexagonal networks are used in mobile base stations in layered,forms called honeycomb.The review settled the topology of a hexagon of two distinct sorts with two invariants KBSO and CQIs and their reduced forms.The deduced outcomes can be utilized for the modeling of mobile cellular networks,multiprocessors interconnections,microchips,chemical compound synthesis and memory interconnection networks.The results find sharp upper bounds and lower bounds of the honeycomb network to utilize the Mobile base station network(MBSN)for the high load of traffic and minimal traffic also.展开更多
We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inho...We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.展开更多
For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincaré...For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincarémap on that cycle,for which an evolution formula is deduced to reveal the relationship among Jacobians of different Poincarésections.The evolution formula also applies to cycles in arbitrary finite n-dimensional autonomous continuous-time dynamical systems.Non-Möbiusian/Möbiusian saddle cycles and a dummy X-cycle are constructed analytically as demonstration.A real-world numeric example of analyzing a magnetic field timeslice on EAST is presented.展开更多
This is a survey of using NMSP method to study higher genus Gromov-Witten invariants of Calabi-Yau quintics.It emphasizes on how and why the various methods are introduced to solve several important conjectures for hi...This is a survey of using NMSP method to study higher genus Gromov-Witten invariants of Calabi-Yau quintics.It emphasizes on how and why the various methods are introduced to solve several important conjectures for higher genus Gromov-Witten invariants of Calabi-Yau quintics.展开更多
基金supported by the Natural Science Foundation of Beijing(Grant No.Z180007)the National Natural Science Foundation of China(Grant Nos.1157200511874003,and 51672018)。
文摘We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping.One type is the four-dimensional point defects.
文摘Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of these measures over time remains understudied.This research explores the structural components of the Center for Epidemiological Studies Depression Scale(CES-D)and examines its consistency across various living environments and temporal stability in a cohort of Chinese teenagers.Method:In the initial phase,1,042 adolescents furnished demographic details and undertook the CES-D assessment.After a three-month interval,967 of these participants repeated the CES-D evaluation.The study employed Confirmatory factor analysis(CFA)to scrutinize the scale’s structural integrity.We investigated factorial invariance by conducting a twopronged CFA:one comparing urban vs.rural backgrounds,and another contrasting the results from the initial assessment with those from the follow-up.Results:The CES-D demonstrated adequate reliability in both rural and urban high school student samples.The preliminary four-factor model applied to the CES-D demonstrated a good fit with the collected data.Invariance tests,including multigroup analyses comparing rural and urban samples and longitudinal assessments,confirmed the scale’s invariance.Conclusions:The results suggest that the CES-D serves as a reliable instrument for evaluating depressive symptoms among Chinese adolescents.Its applicability is consistent across different living environments and remains stable over time.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
文摘This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774088)
文摘In a recent paper [Phys. Rev. A 76 042313 (2007)], Sainz and Bjork introduced an entanglement invariant ε under evolution for a system of four qubits interacting through two isolated Jaynes-Cummings Hamiltonians. This paper proves that this entanglement invariant ε is closely connected with the linear entropy between two independent subsystems.
基金funded by the Deanship of Scientific Research(DSR),King Abdul-Aziz University,Jeddah,Saudi Arabia under Grant No.(RG−11–611–43).
文摘Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifthgeneration(5G)cellular networks.For the formal reason,the study solves the physical network of the mobile base station for the prediction of the best characteristics to develop an enhanced network with the help of graph theory.Any number that can be uniquely calculated by a graph is known as a graph invariant.During the last two decades,innumerable numerical graph invariants have been portrayed and used for correlation analysis.In any case,no efficient assessment has been embraced to choose,how much these invariants are connected with a network graph.This paper will talk about two unique variations of the hexagonal graph with great capability of forecasting in the field of optimized mobile base station topology in setting with physical networks.Since K-banhatti sombor invariants(KBSO)and Contrharmonic-quadratic invariants(CQIs)are newly introduced and have various expectation characteristics for various variations of hexagonal graphs or networks.As the hexagonal networks are used in mobile base stations in layered,forms called honeycomb.The review settled the topology of a hexagon of two distinct sorts with two invariants KBSO and CQIs and their reduced forms.The deduced outcomes can be utilized for the modeling of mobile cellular networks,multiprocessors interconnections,microchips,chemical compound synthesis and memory interconnection networks.The results find sharp upper bounds and lower bounds of the honeycomb network to utilize the Mobile base station network(MBSN)for the high load of traffic and minimal traffic also.
文摘We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.
基金supported by National Magnetic Confined Fusion Energy R&D Program of China(No.2022YFE03030001)National Natural Science Foundation of China(Nos.12275310 and 12175277)+1 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSCCIP019).
文摘For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincarémap on that cycle,for which an evolution formula is deduced to reveal the relationship among Jacobians of different Poincarésections.The evolution formula also applies to cycles in arbitrary finite n-dimensional autonomous continuous-time dynamical systems.Non-Möbiusian/Möbiusian saddle cycles and a dummy X-cycle are constructed analytically as demonstration.A real-world numeric example of analyzing a magnetic field timeslice on EAST is presented.
基金Supported by Hong Kong GRF16301515,GRF16301717,GRF16304119 and GRF16306222。
文摘This is a survey of using NMSP method to study higher genus Gromov-Witten invariants of Calabi-Yau quintics.It emphasizes on how and why the various methods are introduced to solve several important conjectures for higher genus Gromov-Witten invariants of Calabi-Yau quintics.