An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdope...An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.展开更多
A comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier is evaluated. The pump power and thulium-doped fiber (TDF) length for single-pass Thulium-Doped Fiber Amp...A comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier is evaluated. The pump power and thulium-doped fiber (TDF) length for single-pass Thulium-Doped Fiber Amplifiers (TDFA) are theoretically optimized to achieve the optimum Gain and Noise Figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.展开更多
A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introdu...A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.展开更多
We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coheren...We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification.The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber,in good agreement with the calculated results.By using master oscillator power-amplifier(MOPA)architecture and broadband operation of passively phased systems,higher power scaling with high beam quality appears to be feasible.展开更多
We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
A novel and fast model of erbium-doped fiber amplifiers (EDFAs) is presented. By calculating a typical EDFA, numerical results are compared with the results obtained by spectral-solved method. The results of compariso...A novel and fast model of erbium-doped fiber amplifiers (EDFAs) is presented. By calculating a typical EDFA, numerical results are compared with the results obtained by spectral-solved method. The results of comparison show that such a model can improve the computational speed and preserve the precision. Some characteristics of the EDFA are then analyzed using this model. The results are consistent with those of the experiments.展开更多
The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimen...The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimentally studied. We demonstrate a 1064.08nm, 11.6 GHz finewidth, 1.5 k W output power YDFA with an SBS threshold enhancement of -57 (26 W SBS threshold with single frequency seed). The output beam is near-diffraction lim- ited with a beam quality factor elM2 = 1.15 and a slope efficiency of up to 87%. No SBS or stimulated Raman scattering effects are observed in the whole power range. Further power sealing is limited by the available pump power in our system.展开更多
We demonstrate an adaptive polarization control system of a 10.2 W non-polarization-maintaining fiber amplifier based on stochastic parallel gradient decent(SPGD)algorithm.The experimental investigation shows that the...We demonstrate an adaptive polarization control system of a 10.2 W non-polarization-maintaining fiber amplifier based on stochastic parallel gradient decent(SPGD)algorithm.The experimental investigation shows that the system can used to compensate for the polarization fluctuation of the fiber amplifier effectively and perform well over a long-time observation.When the adaptive polarization control system is in closed loop,the extinction ratio increases from 2.28 dB to 11.54 dB,and more than 93.4%of the total power in desired polarization direction is achieved.展开更多
A novel technique to suppress stimulated Raman scattering in a high power narrow-band fiber amplifier is reported. By seeding with a comSination of a broadband amplified spontaneous emission seed and a narrowband mast...A novel technique to suppress stimulated Raman scattering in a high power narrow-band fiber amplifier is reported. By seeding with a comSination of a broadband amplified spontaneous emission seed and a narrowband master oscillator seed, the Raman Stokes components can be reduced about 16dB at a total output power of i kW. Ratnan suppression results are depicted in a different wavelengths seeding case and the same wavelength seeding ease, respectively, with different seed power ratios.展开更多
In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and o...In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and output optical power by employing bidirectional pumping.The PDFA performance is examined by optimizing the length of Praseodymium doped silica fiber(PDF),its mode-field diameter(MFD)and the concentration of Pr^(3+).A small-signal peak gain of 56.4 dB,power conversion efficiency(PCE)of 47%,and output optical power of around 1.6 W(32 dBm)is observed at optimized parameters for input signal wavelength of 1310 nm.Minimum noise figure(NF)of 4.1 dB is observed at input signal wavelength of 1310 nm.Moreover,the effect of varying the pump wavelength and pump power on output optical power of the amplifier and amplified spontaneous emission(ASE)noise is also investigated,respectively.Finally,the impact of ion-ion interaction(up-conversion effect)on small-signal gain of the amplifier is also studied by considering different values of up-conversion coefficient.展开更多
Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to ampli...Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.展开更多
We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-dire...We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.展开更多
A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main ampl...A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.展开更多
We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of...We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.展开更多
The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandw...The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.展开更多
Fluoride-based thulium-doped visible light fiber amplifier(TmVLFA), which can be used to amplify the blue light signal for a visible light communication(VLC) system,is theoretically demonstrated for the first time acc...Fluoride-based thulium-doped visible light fiber amplifier(TmVLFA), which can be used to amplify the blue light signal for a visible light communication(VLC) system,is theoretically demonstrated for the first time according to the best of our knowledge. The transition rate equations and power propagation equations are solved to predict the dependence of the gain and noise figure on fiber parameters. The numerical results show that with the pump wavelength 1150 nm and pump power 800 mW, 2.75 m long thulium-doped fiber can amplify blue light(480 nm) signal up to 33.3 dB, and the noise figure is in the range from 3.0 to 3.5 dB. The model and numerical results encourage the use of fiber amplifier in VLC system for blue light amplification to extend the range of VLC.展开更多
The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg–Landau equation and adaptive split-step Fourier...The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg–Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system.展开更多
Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carded out. The complex Ginzburg-Landau equation ...Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carded out. The complex Ginzburg-Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work.展开更多
A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy betw...A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy between pulses with coherent beat noise uncounted. This definition is more appropriate for high power usage in which the pulse energy receives more attention than the pulse shape integrity. Then the low power pre-amplifying stages are considered as linear amplification and analyzed by linear theory. In the high-power amplification stages, the inversion is assumed to recover linearly in the time interval between pulses. The time shape of the output pulse is different from that of the input signal because of different gains at the front and back ends of the pulse. Then, a criterion is provided to distinguish the nonlinear and linear amplifications based on the signal-to-noise ratio (SNR) analysis. Then, an experiment that shows that the output SNR actually drops off in nonlinear amplification is performed. The change in the noise factor can be well evaluated by pulse shape distortion.展开更多
The polarization dependences of gain and amplified spontaneous Brillouin scattering(ABS) noise for fiber Brillouin amplifier(FBA) are analyzed through theories, simulations, and experiments.Modified vector propagation...The polarization dependences of gain and amplified spontaneous Brillouin scattering(ABS) noise for fiber Brillouin amplifier(FBA) are analyzed through theories, simulations, and experiments.Modified vector propagation equations for calculating the gain of the probe signal and the ABS noise are derived and analyzed in the Stokes spaces.In simulations and experiments, we prove that the gain of the probe signal and the ABS noise are strongly dependent on the relative state of polarization(SOP) of the pump and probe signals.The closer the relative SOP of the pump and probe signals is, the more obvious ABS noise suppression effect will be brought by increasing the power of the input probe signal.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10225417 and 61675009)the Natural Science Foundation of Beijing Municipality (Grant Nos. 4204091 and KZ201910005006)the China Postdoctoral Science Foundation (Grant No. 212423)。
文摘An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.
文摘A comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier is evaluated. The pump power and thulium-doped fiber (TDF) length for single-pass Thulium-Doped Fiber Amplifiers (TDFA) are theoretically optimized to achieve the optimum Gain and Noise Figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.
基金supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60908011 and 60907045the National High Technology Research and Development Program of China under Grant No 2008AA03Z405the National Science and Technology Major Project of China under Grant No 2010ZX04013 and the Shanghai“Phosphor”Science Foundation under Grant No 09QB1401700.
文摘We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification.The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber,in good agreement with the calculated results.By using master oscillator power-amplifier(MOPA)architecture and broadband operation of passively phased systems,higher power scaling with high beam quality appears to be feasible.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
文摘A novel and fast model of erbium-doped fiber amplifiers (EDFAs) is presented. By calculating a typical EDFA, numerical results are compared with the results obtained by spectral-solved method. The results of comparison show that such a model can improve the computational speed and preserve the precision. Some characteristics of the EDFA are then analyzed using this model. The results are consistent with those of the experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1330134,61308024 and 11174305the National High-Technology Research and Development Program of China under Grant No 2014AA041901the Shanghai Natural Science Foundation under Grant No 11ZR1441400
文摘The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimentally studied. We demonstrate a 1064.08nm, 11.6 GHz finewidth, 1.5 k W output power YDFA with an SBS threshold enhancement of -57 (26 W SBS threshold with single frequency seed). The output beam is near-diffraction lim- ited with a beam quality factor elM2 = 1.15 and a slope efficiency of up to 87%. No SBS or stimulated Raman scattering effects are observed in the whole power range. Further power sealing is limited by the available pump power in our system.
基金Supported by the Innovation Foundation for Graduates in National University of Defense Technology under Grant S120703.
文摘We demonstrate an adaptive polarization control system of a 10.2 W non-polarization-maintaining fiber amplifier based on stochastic parallel gradient decent(SPGD)algorithm.The experimental investigation shows that the system can used to compensate for the polarization fluctuation of the fiber amplifier effectively and perform well over a long-time observation.When the adaptive polarization control system is in closed loop,the extinction ratio increases from 2.28 dB to 11.54 dB,and more than 93.4%of the total power in desired polarization direction is achieved.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901the NSAF Foundation of National Natural Science Foundation of China under Grant No U1330134the National Natural Science Foundation of China under Grant No 61308024
文摘A novel technique to suppress stimulated Raman scattering in a high power narrow-band fiber amplifier is reported. By seeding with a comSination of a broadband amplified spontaneous emission seed and a narrowband master oscillator seed, the Raman Stokes components can be reduced about 16dB at a total output power of i kW. Ratnan suppression results are depicted in a different wavelengths seeding case and the same wavelength seeding ease, respectively, with different seed power ratios.
文摘In this paper,we report a simulation study on the performance enhancement of Praseodymium doped silica fiber amplifiers(PDFAs)in O-band(1270-1350 nm)in terms of small signal gain,power conversion efficiency(PCE),and output optical power by employing bidirectional pumping.The PDFA performance is examined by optimizing the length of Praseodymium doped silica fiber(PDF),its mode-field diameter(MFD)and the concentration of Pr^(3+).A small-signal peak gain of 56.4 dB,power conversion efficiency(PCE)of 47%,and output optical power of around 1.6 W(32 dBm)is observed at optimized parameters for input signal wavelength of 1310 nm.Minimum noise figure(NF)of 4.1 dB is observed at input signal wavelength of 1310 nm.Moreover,the effect of varying the pump wavelength and pump power on output optical power of the amplifier and amplified spontaneous emission(ASE)noise is also investigated,respectively.Finally,the impact of ion-ion interaction(up-conversion effect)on small-signal gain of the amplifier is also studied by considering different values of up-conversion coefficient.
基金National Natural Science Foundation of China(60507001 60477022 06YFGPGX08500)
文摘Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.
文摘We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.
文摘A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Science and Technology Project of Guangdong Province under Grant Nos 20148090903014,20158090920003,20168090917002 and20168090926004
文摘We demonstrate a self-starting erbium fiber oscillator-amplifier system based on the nonlinear polarization rota- tion mode-locked mechanism. The direct output pulse from the amplifier is 47fs with an average power of 1.22 W and a repetition rate of 50 MHz, corresponding to a pulse energy of 24 nJ. The full width at half-maximum of the spectrum of the output pulses is approximately 93nm at a central wavelength of 1572nm so that the transform- limited pulse duration is as short as 39 fs. Due to the imperfect dispersion compensation, we compress the pulses to 47fs in this experiment.
基金supported by the National Natural Science Foundation under Grant No. 60608009Zhejiang Science Foundation under Grant No. Y107091.
文摘The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.
文摘Fluoride-based thulium-doped visible light fiber amplifier(TmVLFA), which can be used to amplify the blue light signal for a visible light communication(VLC) system,is theoretically demonstrated for the first time according to the best of our knowledge. The transition rate equations and power propagation equations are solved to predict the dependence of the gain and noise figure on fiber parameters. The numerical results show that with the pump wavelength 1150 nm and pump power 800 mW, 2.75 m long thulium-doped fiber can amplify blue light(480 nm) signal up to 33.3 dB, and the noise figure is in the range from 3.0 to 3.5 dB. The model and numerical results encourage the use of fiber amplifier in VLC system for blue light amplification to extend the range of VLC.
基金supported by the National Natural Science Foundation of China(Grant Nos.11404404 and 11274385)the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology,China(Grant No.B120701)
文摘The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg–Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61235008)the National Natural Science Foundation of China(Grant Nos.61077076,11004247,and 11274385)+3 种基金the International Science&Technology Cooperation of China(Grant No.2012DFG11470)the Natural Science Foundation for Distinguished Young Scholars of Hunan Province of China(Grant No.12JJ1010)the Outstanding Youth Fund Project of Hunan Province of Chinathe Fund of Innovation of National University of Defense Technology of China(Grant No.B120701)
文摘Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carded out. The complex Ginzburg-Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2011AA8042032)the National Natural Science Foundation of China(Grant Nos.61077034 and 61301190)
文摘A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy between pulses with coherent beat noise uncounted. This definition is more appropriate for high power usage in which the pulse energy receives more attention than the pulse shape integrity. Then the low power pre-amplifying stages are considered as linear amplification and analyzed by linear theory. In the high-power amplification stages, the inversion is assumed to recover linearly in the time interval between pulses. The time shape of the output pulse is different from that of the input signal because of different gains at the front and back ends of the pulse. Then, a criterion is provided to distinguish the nonlinear and linear amplifications based on the signal-to-noise ratio (SNR) analysis. Then, an experiment that shows that the output SNR actually drops off in nonlinear amplification is performed. The change in the noise factor can be well evaluated by pulse shape distortion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61531003,61690195,61701040,and 61427813)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications(BUPT),Chinathe Youth Research and Innovation Program of BUPT,China
文摘The polarization dependences of gain and amplified spontaneous Brillouin scattering(ABS) noise for fiber Brillouin amplifier(FBA) are analyzed through theories, simulations, and experiments.Modified vector propagation equations for calculating the gain of the probe signal and the ABS noise are derived and analyzed in the Stokes spaces.In simulations and experiments, we prove that the gain of the probe signal and the ABS noise are strongly dependent on the relative state of polarization(SOP) of the pump and probe signals.The closer the relative SOP of the pump and probe signals is, the more obvious ABS noise suppression effect will be brought by increasing the power of the input probe signal.