Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the sol...Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.展开更多
<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used togeth...<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used together with plank and de Brogglie hypothesis to prove that the wave group velocity is equal to the particle velocity in both ordinary and curved space. The plank energy relation is shown also to be related to the classical energy relation of an oscillating string. Starting from plank energy relation for n photons and performing integration, the expression of classical string energy was obtained. This means that one can treat electromagnetic waves as a collection of continuous photons having frequencies ranging from zero to w. Conversely, starting from classical string energy relation by differentiating it with respect to angular frequency, the plank quantum energy for n photons has been found. This means that the quanta results from separation of electromagnetic waves to single isolated waves. Each wave consists of n photons or quanta.</span>展开更多
A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account th...A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.展开更多
This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techni...This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techniques. Based on the microgeology and thin section analyses, the lithology, lithofacies and periods of the Permian igneous rocks are described in detail. The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume. The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data. Through analysis of thin sections, the lithofacies can be classified into eruption airfall subfacies, eruption pyroclastic flow subfacies and eruption facies.展开更多
In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity st...In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.展开更多
It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lin...Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lining physical model experiment,the layout defects of the double-layer reinforcement lining area were detected and the Rayleigh wave velocity profile and dispersion curve were analyzed after data process-ing,which finally verified the feasibility and accuracy of Rayleigh wave method in detecting the tunnel lining void area.The results show that the method is not affected by the reinforcement inside the lining,the shallow detection is less disturbed and the accuracy is higher,and the data will fluctuate slightly with the deepening of the detection depth.At the same time,this method responds quite accurately to the thickness of the concrete,allowing for the assessment of the tunnel lining’s lack of compactness.This method has high efficiency,good reliability,and simple data processing,and is suitable for nondestructive detection of internal defects of tun-nel lining structure.展开更多
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
基金Project supported by the Science and Technology Research Project of Hebei Province Colleges and Universities (Grant No. QN2020113)Tangshan Applied Basic Research Project (Grant No. 19130227g)。
文摘Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.
文摘<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used together with plank and de Brogglie hypothesis to prove that the wave group velocity is equal to the particle velocity in both ordinary and curved space. The plank energy relation is shown also to be related to the classical energy relation of an oscillating string. Starting from plank energy relation for n photons and performing integration, the expression of classical string energy was obtained. This means that one can treat electromagnetic waves as a collection of continuous photons having frequencies ranging from zero to w. Conversely, starting from classical string energy relation by differentiating it with respect to angular frequency, the plank quantum energy for n photons has been found. This means that the quanta results from separation of electromagnetic waves to single isolated waves. Each wave consists of n photons or quanta.</span>
基金Sponsored by the National Basic Research Program of China ("973"Program)
文摘A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.
基金A Project Funded by National Science and Technology Major Project (2011ZX05001-002-003)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Key Laboratory for Coalbed Methane Resources and Reservoir formation Process, CUMT, Ministry of Education, China
文摘This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techniques. Based on the microgeology and thin section analyses, the lithology, lithofacies and periods of the Permian igneous rocks are described in detail. The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume. The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data. Through analysis of thin sections, the lithofacies can be classified into eruption airfall subfacies, eruption pyroclastic flow subfacies and eruption facies.
基金supported by Special R&D Fund of Seismological Industry (200808067)Spark Program of Earthquake Science (XH1016Y),China
文摘In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
基金Supported by Project of Natural Science Foundation of Jilin Province(No.20220101172JC).
文摘Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lining physical model experiment,the layout defects of the double-layer reinforcement lining area were detected and the Rayleigh wave velocity profile and dispersion curve were analyzed after data process-ing,which finally verified the feasibility and accuracy of Rayleigh wave method in detecting the tunnel lining void area.The results show that the method is not affected by the reinforcement inside the lining,the shallow detection is less disturbed and the accuracy is higher,and the data will fluctuate slightly with the deepening of the detection depth.At the same time,this method responds quite accurately to the thickness of the concrete,allowing for the assessment of the tunnel lining’s lack of compactness.This method has high efficiency,good reliability,and simple data processing,and is suitable for nondestructive detection of internal defects of tun-nel lining structure.