Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity ...Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity level tools and the empirical parameters pose challenges due to the strong nonlinear coupling effects of FOWTs.A novel method,named SADA,was proposed by Chen and Hu(2021)for optimizing the design and dynamic performance prediction of FOWTs in combination with AI technology.In the SADA method,the concept of Key Disciplinary Parameters(KDPs)is also proposed,and it is of crucial importance in the SADA method.The purpose of this paper is to make an in-depth investigation of the characters of KDPs and the internal correlations between different KDPs in the dynamic performance prediction of FOWTs.Firstly,a brief description of SADA is given,and the basin experimental data are used to conduct the training process of SADA.Secondly,categories and boundary conditions of KDPs are introduced.Three types of KDPs are given,and different boundary conditions are used to analyze KDPs.The results show that the wind and current in Environmental KDPs are strongly correlated with the percentage difference of dynamic response rather than that by wave parameters.In general,the optimization results of SADA consider the specific basin environment and the coupling results between different KDPs help the designers further understand the factors that have a more significant impact on the FOWTs system in a specific domain.展开更多
文摘Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity level tools and the empirical parameters pose challenges due to the strong nonlinear coupling effects of FOWTs.A novel method,named SADA,was proposed by Chen and Hu(2021)for optimizing the design and dynamic performance prediction of FOWTs in combination with AI technology.In the SADA method,the concept of Key Disciplinary Parameters(KDPs)is also proposed,and it is of crucial importance in the SADA method.The purpose of this paper is to make an in-depth investigation of the characters of KDPs and the internal correlations between different KDPs in the dynamic performance prediction of FOWTs.Firstly,a brief description of SADA is given,and the basin experimental data are used to conduct the training process of SADA.Secondly,categories and boundary conditions of KDPs are introduced.Three types of KDPs are given,and different boundary conditions are used to analyze KDPs.The results show that the wind and current in Environmental KDPs are strongly correlated with the percentage difference of dynamic response rather than that by wave parameters.In general,the optimization results of SADA consider the specific basin environment and the coupling results between different KDPs help the designers further understand the factors that have a more significant impact on the FOWTs system in a specific domain.