期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法 被引量:4
1
作者 李志远 郭嘉逸 +3 位作者 张月婷 黄丽佳 李洁 吴一戎 《雷达学报(中英文)》 CSCD 北大核心 2022年第1期83-94,共12页
在SAR散焦船舶图像中,部分船舶目标的散焦现象具有沿距离向空变的特性。针对此类散焦船舶目标,该文提出了一种基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法,该算法直接对复图像进行处理,可以实现对任意阶次相... 在SAR散焦船舶图像中,部分船舶目标的散焦现象具有沿距离向空变的特性。针对此类散焦船舶目标,该文提出了一种基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法,该算法直接对复图像进行处理,可以实现对任意阶次相位误差的补偿。在仿真数据和GF-3数据上的实验结果表明,所提算法可以有效地实现SAR图像空变散焦船舶目标自聚焦,聚焦后的船舶图像在图像熵与对比度上都有所改善,且算法聚焦速度有很大提升。 展开更多
关键词 合成孔径雷达 船舶目标 自适应动量估计优化器 空变最小熵 自聚焦算法
下载PDF
稀疏编码树框架下的SAR目标识别
2
作者 陈春林 张礼 刘学军 《计算机科学与探索》 CSCD 北大核心 2017年第5期768-775,共8页
为了提高利用合成孔径雷达(synthetic aperture radar,SAR)图像对目标型号识别的能力,在稀疏表示识别方法的基础上,提出了一种树形框架稀疏编码的雷达目标识别方法。稀疏编码树是由多个节点构成的分类器,其上每个节点由不同识别需求的... 为了提高利用合成孔径雷达(synthetic aperture radar,SAR)图像对目标型号识别的能力,在稀疏表示识别方法的基础上,提出了一种树形框架稀疏编码的雷达目标识别方法。稀疏编码树是由多个节点构成的分类器,其上每个节点由不同识别需求的子分类器构成。在训练阶段,分别针对目标型号识别需求以及型号识别需求学习相应分类器,组成分类器的根节点和子节点。识别阶段在根节点位置完成对目标类别的判断,再根据根节点的判断结果,对存在型号变体的目标,在子节点上再对型号进行识别,最终输出目标的识别结果,而不存在型号变体的目标则直接输出识别结果。基于美国运动和静止目标获取与识别(moving and stationary target acquisition and recognition,MSTAR)计划录取的SAR图像数据集上的实验结果表明,树形结构在取得与主流方法相当的目标类别识别精度的前提下,提高了对目标型号的识别能力,同时能够准确输出目标类别识别结果。 展开更多
关键词 sar目标识别 型号识别 稀疏编码树 字典学习 稀疏表示
下载PDF
基于局部纹理特征的合成孔径雷达变体目标自动识别算法
3
作者 尹奎英 金林 +1 位作者 刘宏伟 王英华 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期743-748,共6页
提出了一种针对变体的识别算法,利用变体与原目标局部纹理之间的相似性进行识别。首先,提出了一种基于清晰边缘的合成孔径雷达(Synthetic aperture radar,SAR)图像配准算法;然后使用结合伽柏(Gabor)变换,局部二值模式(Local binary patt... 提出了一种针对变体的识别算法,利用变体与原目标局部纹理之间的相似性进行识别。首先,提出了一种基于清晰边缘的合成孔径雷达(Synthetic aperture radar,SAR)图像配准算法;然后使用结合伽柏(Gabor)变换,局部二值模式(Local binary pattern,LBP)和空间区域直方图的纹理特征来描述SAR图像;最后用基于大特征的直方图序列的匹配做识别。基于MSTAR S2的试验结果证明了本算法的有效性。 展开更多
关键词 信息处理技术 合成孔径雷达 sar自动目标识别 局部纹理特征 sar目标变体
下载PDF
SAR变体目标识别的卷积神经网络法 被引量:7
4
作者 冯秋晨 彭冬亮 谷雨 《中国图象图形学报》 CSCD 北大核心 2019年第2期258-268,共11页
目的深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度... 目的深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度地保留SAR图像输入特征出发,设计一种适用于SAR变体目标识别的深度卷积神经网络结构。方法设计网络主要由多尺度空间特征提取模块和Dense Net中的稠密块、转移层构成。多尺度特征提取模块置于网络底层,通过使用尺寸分别为1×1、3×3、5×5、7×7、9×9的卷积核,提取丰富空间特征的同时保留输入图像信息。为使输入图像信息更加有效地向后传递,基于Dense Net中的稠密块和转移层进行后续网络层设计。在对训练样本进行样本扩充基础上,分析了输入图像分辨率及目标存在平移和不同噪声水平等情况对模型识别精度的影响,与用于SAR图像目标识别的深度模型识别精度在标准操作条件下进行了对比分析。结果实验结果表明,对T72 8类变体目标进行分类,设计的模型能够取得95. 48%的识别精度,在存在目标平移和不同噪声水平情况下,平均识别精度分别达到了94. 61%和86. 36%。对10类目标(包括不含变体和含变体情况)在进行数据增强的情况下进行模型训练与测试,分别达到了99. 38%和98. 81%的识别精度,略优于其他对比模型结构识别精度。结论提出的模型可以充分利用输入图像以及各卷积层输出的特征,学习目标图像的细节差异,不仅适用于SAR图像变体目标的识别任务,同时在标准操作条件下的识别任务也取得了较高的识别结果。 展开更多
关键词 sar目标识别 变体目标 深度学习 多尺度特征 DenseNet
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部