为了对能源消耗做出精准的预测,文章提出了一种基于带外生变量的季节差分移动自回归(seasonal autoregressive integrated moving average with exogenous,SARIMAX)模型与极限梯度提升算法(extreme gradient boosting,XGBoost)混合模型...为了对能源消耗做出精准的预测,文章提出了一种基于带外生变量的季节差分移动自回归(seasonal autoregressive integrated moving average with exogenous,SARIMAX)模型与极限梯度提升算法(extreme gradient boosting,XGBoost)混合模型的能耗预测方法。首先导入实验所需的训练数据以及辅佐用的天气环境数据,利用k-means构建天气簇类,然后构建节假日指示器,根据季节趋势做进一步调整,利用网格搜索选取SARIMAX模型最优参数组合,最后混合XGBoost算法优化预测模型,做出预测并对比实现结果。通过结果分析可知,混合SARIMAX模型和XGBoost模型能够在考虑多个外生变量的基础上实现对区域能耗的精准预测。展开更多
文摘为了对能源消耗做出精准的预测,文章提出了一种基于带外生变量的季节差分移动自回归(seasonal autoregressive integrated moving average with exogenous,SARIMAX)模型与极限梯度提升算法(extreme gradient boosting,XGBoost)混合模型的能耗预测方法。首先导入实验所需的训练数据以及辅佐用的天气环境数据,利用k-means构建天气簇类,然后构建节假日指示器,根据季节趋势做进一步调整,利用网格搜索选取SARIMAX模型最优参数组合,最后混合XGBoost算法优化预测模型,做出预测并对比实现结果。通过结果分析可知,混合SARIMAX模型和XGBoost模型能够在考虑多个外生变量的基础上实现对区域能耗的精准预测。