The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Fini...The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.展开更多
应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强...应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。展开更多
基金NSFC Grants(12072063,11972109)Grant of State Key Laboratory of Structural Analysis for Industrial Equipment(S22403)+1 种基金National Key Research and Development Program of China(2020YFB1708304)Alexander von Humboldt Foundation(1217594).
文摘The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.
文摘应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。