This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For fiv...This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For five kinds of kaolin powder, the value of τ° spans the range of 100-430 Pa, while the corresponding compressive elastic constant of SBR varies from 12 to 21 MPa. A relationship between τ° and △E^i^*/ER^* is proposed. Critical examination of these data infers that kaolin powder dispersed in solid rubber matrix acts as an additive which decreases the random movement of the polybutadiene chains. Consequently, dispersions of nano-particles in liquid and in solid SBR are considered to be related, thus leading to a theological method for selecting nano-particles as fillers in solid SBR.展开更多
Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which...Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which directly affects the performance of a tire, is generally produced from natural and synthetic rubbers. Intensive scientific studies have been carried out on liquid rubbers because they reduce the consumption of process oils used in the tire production phase and increase dispersion. In this study, the rheological and physico-mechanical properties of rubbers developed using only liquid rubber (liquid isoprene and liquid SBR) with four different viscosities and without using process oil (Styrene Butadiene Rubber—SBR) were investigated. It has been observed that the rubber blends produced by adding four different liquid rubbers to the same recipe caused changes in rheological and physico-mechanical properties compared to the reference sample. It was observed that the minimum torque/viscosity (ML), maximum torque/viscosity (MH) and curing time (t90) in some of the formulas tested decreased significantly due to the use of liquid rubber.展开更多
基金This work is part of a research program between the Univer-sity of Genoa and the Artigo S.p.A. under the contract 13/2007
文摘This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For five kinds of kaolin powder, the value of τ° spans the range of 100-430 Pa, while the corresponding compressive elastic constant of SBR varies from 12 to 21 MPa. A relationship between τ° and △E^i^*/ER^* is proposed. Critical examination of these data infers that kaolin powder dispersed in solid rubber matrix acts as an additive which decreases the random movement of the polybutadiene chains. Consequently, dispersions of nano-particles in liquid and in solid SBR are considered to be related, thus leading to a theological method for selecting nano-particles as fillers in solid SBR.
文摘Along with the developing technology in the rubber industry, the use of natural and synthetic rubbers as well as liquid rubbers has increased significantly in recent years. The formulation of the tread compound, which directly affects the performance of a tire, is generally produced from natural and synthetic rubbers. Intensive scientific studies have been carried out on liquid rubbers because they reduce the consumption of process oils used in the tire production phase and increase dispersion. In this study, the rheological and physico-mechanical properties of rubbers developed using only liquid rubber (liquid isoprene and liquid SBR) with four different viscosities and without using process oil (Styrene Butadiene Rubber—SBR) were investigated. It has been observed that the rubber blends produced by adding four different liquid rubbers to the same recipe caused changes in rheological and physico-mechanical properties compared to the reference sample. It was observed that the minimum torque/viscosity (ML), maximum torque/viscosity (MH) and curing time (t90) in some of the formulas tested decreased significantly due to the use of liquid rubber.