S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. T...S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. This review described both the identification of pollen specific F-box genes, SLF/SFBs, in Antirrhinum, Petunia and Prunus species and the demonstration of SLF/SFB as pollen determinant together with their functions in GSI response. Recent studies of how the pollen determinant functions in pollination reaction revealed that pollen determinant interacted with S-RNases in a non-allele-specific manner. It targeted all of the non-self S-RNases for ubiquitination through a functional SCF complex and subsequent degradation via 26S proteasome pathway in compatible reaction. It allows pollen tube to reach into the embryo sac and to finish double fertilization. In incompatible response, the intact self S-RNases were left to function as a cytotoxin that degrades self-pollen tube RNA, resulting in the cessation of pollen tube growth.展开更多
生长素参与植物生长和发育诸多过程,调控众多生理反应,在植物整个生命周期中自始至终发挥着调节作用.研究生长素的作用机制,对深入认识植物生长发育的生理过程有着重要的意义.综述了与生长素信号转导途径相关的3类主要蛋白组分:生长素/...生长素参与植物生长和发育诸多过程,调控众多生理反应,在植物整个生命周期中自始至终发挥着调节作用.研究生长素的作用机制,对深入认识植物生长发育的生理过程有着重要的意义.综述了与生长素信号转导途径相关的3类主要蛋白组分:生长素/吲哚乙酸蛋白(auxin/indoleacetic acids proteins,Aux/IAAs)、生长素响应因子(auxin response factors,ARFs)和SCF(SKP1-CDC53/CUL1-F-box)复合体,及相关的SGT1(suppressor of the G2 allele of skp1)基因,并对生长素相关基因表达的模式及其生物学功能进行了总结.展开更多
Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development. Previously, we have shown that MAX2, an F-box protein, positively regulates fac...Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development. Previously, we have shown that MAX2, an F-box protein, positively regulates facets of photomorphogenic development in response to light. However, how MAX2 controls these responses is still unknown. Here, we show that MAX2 oppositely regulates GA and ABA biosynthesis to optimize seed germination in response to light. Dose-response curves showed that max2 seeds are hyposensitive to GA and hypersensitive to ABA in seed ger- mination responses. RT-PCR assays demonstrated that the expression of GA biosynthetic genes is down-regulated, while the expression of GA catabolic genes is up-regulated in the rnax2 seeds compared to wild-type. Interestingly, expression of both ABA biosynthetic and catabolic genes is up-regulated in the max2 seeds compared to wild-type. Treatment with an auxin transport inhibitor, NPA, showed that increased auxin transport in max2 seedlings contributes to the long hypocotyl phenotype under light. Moreover, light-signaling phenotypes are restricted to max2, as the biosynthetic mutants in the strigolactone pathway, max1, max3, and rnax4, did not display any defects in seed germination and seedling de-etiolation compared to wild-type. Taken together, these data suggest that MAX2 modulates multiple hormone pathways to affect photomorphogenesis.展开更多
The mechanism by which the plant hormone auxin regulates gene expression has been shown to involve regulated degradation, through the ubiquitin-proteasome pathway, of transcriptional repressor proteins. However, the k...The mechanism by which the plant hormone auxin regulates gene expression has been shown to involve regulated degradation, through the ubiquitin-proteasome pathway, of transcriptional repressor proteins. However, the key first component in this pathway, the receptor that binds auxin and initiates auxin signaling, has remained a mystery. Two recent papers identify the F-box protein TIR1, part of the complex that attaches ubiquitin to its targets, as an auxin receptor. This breakthrough reveals a new mode of signal transduction and lays the groundwork for a more complete understanding of auxin physiology.展开更多
基金This work was supported by grants from Three Founda-tions of Hunan Province (00JZY2155) and International Cooperation Project
文摘S-RNase-mediated gametophytic self-incompatibility (GSI) is controlled by a multiallelic S-locus at which two separate genes, the female (pistil) and male (pollen) specificity determinants, are tightly linked. This review described both the identification of pollen specific F-box genes, SLF/SFBs, in Antirrhinum, Petunia and Prunus species and the demonstration of SLF/SFB as pollen determinant together with their functions in GSI response. Recent studies of how the pollen determinant functions in pollination reaction revealed that pollen determinant interacted with S-RNases in a non-allele-specific manner. It targeted all of the non-self S-RNases for ubiquitination through a functional SCF complex and subsequent degradation via 26S proteasome pathway in compatible reaction. It allows pollen tube to reach into the embryo sac and to finish double fertilization. In incompatible response, the intact self S-RNases were left to function as a cytotoxin that degrades self-pollen tube RNA, resulting in the cessation of pollen tube growth.
文摘生长素参与植物生长和发育诸多过程,调控众多生理反应,在植物整个生命周期中自始至终发挥着调节作用.研究生长素的作用机制,对深入认识植物生长发育的生理过程有着重要的意义.综述了与生长素信号转导途径相关的3类主要蛋白组分:生长素/吲哚乙酸蛋白(auxin/indoleacetic acids proteins,Aux/IAAs)、生长素响应因子(auxin response factors,ARFs)和SCF(SKP1-CDC53/CUL1-F-box)复合体,及相关的SGT1(suppressor of the G2 allele of skp1)基因,并对生长素相关基因表达的模式及其生物学功能进行了总结.
文摘Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development. Previously, we have shown that MAX2, an F-box protein, positively regulates facets of photomorphogenic development in response to light. However, how MAX2 controls these responses is still unknown. Here, we show that MAX2 oppositely regulates GA and ABA biosynthesis to optimize seed germination in response to light. Dose-response curves showed that max2 seeds are hyposensitive to GA and hypersensitive to ABA in seed ger- mination responses. RT-PCR assays demonstrated that the expression of GA biosynthetic genes is down-regulated, while the expression of GA catabolic genes is up-regulated in the rnax2 seeds compared to wild-type. Interestingly, expression of both ABA biosynthetic and catabolic genes is up-regulated in the max2 seeds compared to wild-type. Treatment with an auxin transport inhibitor, NPA, showed that increased auxin transport in max2 seedlings contributes to the long hypocotyl phenotype under light. Moreover, light-signaling phenotypes are restricted to max2, as the biosynthetic mutants in the strigolactone pathway, max1, max3, and rnax4, did not display any defects in seed germination and seedling de-etiolation compared to wild-type. Taken together, these data suggest that MAX2 modulates multiple hormone pathways to affect photomorphogenesis.
基金the National Natural Science Foundation of China,Science Publication Foundation of the Chinese Academy of Sciences
文摘The mechanism by which the plant hormone auxin regulates gene expression has been shown to involve regulated degradation, through the ubiquitin-proteasome pathway, of transcriptional repressor proteins. However, the key first component in this pathway, the receptor that binds auxin and initiates auxin signaling, has remained a mystery. Two recent papers identify the F-box protein TIR1, part of the complex that attaches ubiquitin to its targets, as an auxin receptor. This breakthrough reveals a new mode of signal transduction and lays the groundwork for a more complete understanding of auxin physiology.