Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flower...Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flowering.mi R171 b-overexpressing rice plants(OX171 b)displayed increased rice blast resistance accompanied with enhanced defense responses and late heading,whereas blocking mi R171 b expression in rice(MIM171)led to greater susceptibility to blast disease,associated with compromised defense responses and early heading.Either overexpressing or silencing of mi R171 b significantly affected plant height and number of filled seeds per panicle(seed-setting rate),resulting in decreased grain yield.mi R171 b targets SCL6-IIa,SCL6-IIb,and SCL6-IIc,whose expression was suppressed in OX171 b but increased in MIM171.Mutants of SCL6-IIa,SCL6-IIb,and SCL6-IIc all displayed phenotypes like that of OX171 b,including markedly increased blast disease resistance,slightly decreased grain yield,and delayed flowering.Amounts of mi R171 b increased gradually in leaves during the vegetative stage but decreased gradually in panicles during the reproductive stage,whereas SCL6-IIs displayed the reverse expression pattern.Together,these results suggest that the expression of mi R171 b was time-and space-dependent during the rice growth period and regulated the balance between rice blast disease resistance,grain yield,and flowering via SCL6-IIs,and that appropriate accumulation of mi R171 b is essential for rice development.展开更多
MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot...MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.展开更多
基金supported by the National Natural Science Foundation of China(U19A2033,31672090,and 31430072)the Sichuan Applied Fundamental Research Foundation(2020YJ0332)to Wenming Wang。
文摘Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flowering.mi R171 b-overexpressing rice plants(OX171 b)displayed increased rice blast resistance accompanied with enhanced defense responses and late heading,whereas blocking mi R171 b expression in rice(MIM171)led to greater susceptibility to blast disease,associated with compromised defense responses and early heading.Either overexpressing or silencing of mi R171 b significantly affected plant height and number of filled seeds per panicle(seed-setting rate),resulting in decreased grain yield.mi R171 b targets SCL6-IIa,SCL6-IIb,and SCL6-IIc,whose expression was suppressed in OX171 b but increased in MIM171.Mutants of SCL6-IIa,SCL6-IIb,and SCL6-IIc all displayed phenotypes like that of OX171 b,including markedly increased blast disease resistance,slightly decreased grain yield,and delayed flowering.Amounts of mi R171 b increased gradually in leaves during the vegetative stage but decreased gradually in panicles during the reproductive stage,whereas SCL6-IIs displayed the reverse expression pattern.Together,these results suggest that the expression of mi R171 b was time-and space-dependent during the rice growth period and regulated the balance between rice blast disease resistance,grain yield,and flowering via SCL6-IIs,and that appropriate accumulation of mi R171 b is essential for rice development.
文摘MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.