NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and ...NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and so on, and the effect of TiO\-2 surface properties on the SCR(selective catalytic reduction) activity of V\-2O\-5/TiO\-2 catalysts was studied. It was found that the TiO\-2 surface properties had strong affect on the SCR activity of V\-2O\-5/TiO\-2 catalysts. The stronger acidic property resulted in the higher exposure of active sites as well as the higher SCR activity.展开更多
Selective Catalytic Reduction (SCR) catalysts respond slowly to transient inputs, which is troublesome when designing ammonia feed controllers. An experimental SCR test apparatus installed on a slipstream of a Coo-per...Selective Catalytic Reduction (SCR) catalysts respond slowly to transient inputs, which is troublesome when designing ammonia feed controllers. An experimental SCR test apparatus installed on a slipstream of a Coo-per-Bessemer GMV-4, 2-stroke cycle natural gas engine is utilized. Ammonia (NH3) feed rate control algo-rithm development is carried out. Two control algorithms are evaluated: a feed forward control algorithm, using a pre ammonia injection ceramic NOx sensor and a feed forward plus feedback control algorithm, us-ing a pre ammonia injection ceramic NOx sensor and post catalyst ceramic NOx sensor to generate feedback signals. The feed forward algorithm controls to constant user input NH3/NOx molar ratio. The data show the lack of pressure compensation on the ceramic NOx sensors cause errors in feed forward NOx readings, re-sulting in sub optimal ammonia feed. The feedback system minimizes the post catalyst ceramic NOx sensor signal by adjusting the NH3/NOx molar ratio. The NOx sensors respond to ammonia + NOx;therefore, the feed forward plus feedback algorithm minimizes the sum of NOx emissions and ammonia slip. Successful application of the feedback control minimization technique is demonstrated with feedback periods of 15 and 5 minutes with molar ratio step sizes of 5 and 2.5%, respectively.展开更多
文摘NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and so on, and the effect of TiO\-2 surface properties on the SCR(selective catalytic reduction) activity of V\-2O\-5/TiO\-2 catalysts was studied. It was found that the TiO\-2 surface properties had strong affect on the SCR activity of V\-2O\-5/TiO\-2 catalysts. The stronger acidic property resulted in the higher exposure of active sites as well as the higher SCR activity.
文摘Selective Catalytic Reduction (SCR) catalysts respond slowly to transient inputs, which is troublesome when designing ammonia feed controllers. An experimental SCR test apparatus installed on a slipstream of a Coo-per-Bessemer GMV-4, 2-stroke cycle natural gas engine is utilized. Ammonia (NH3) feed rate control algo-rithm development is carried out. Two control algorithms are evaluated: a feed forward control algorithm, using a pre ammonia injection ceramic NOx sensor and a feed forward plus feedback control algorithm, us-ing a pre ammonia injection ceramic NOx sensor and post catalyst ceramic NOx sensor to generate feedback signals. The feed forward algorithm controls to constant user input NH3/NOx molar ratio. The data show the lack of pressure compensation on the ceramic NOx sensors cause errors in feed forward NOx readings, re-sulting in sub optimal ammonia feed. The feedback system minimizes the post catalyst ceramic NOx sensor signal by adjusting the NH3/NOx molar ratio. The NOx sensors respond to ammonia + NOx;therefore, the feed forward plus feedback algorithm minimizes the sum of NOx emissions and ammonia slip. Successful application of the feedback control minimization technique is demonstrated with feedback periods of 15 and 5 minutes with molar ratio step sizes of 5 and 2.5%, respectively.