Samples(25500)were collected from a selective catalytic reduction(SCR)denitrification system in a fluid catalytic cracking unit and preprocessed using the quartile method and the K-nearest neighbors interpolation meth...Samples(25500)were collected from a selective catalytic reduction(SCR)denitrification system in a fluid catalytic cracking unit and preprocessed using the quartile method and the K-nearest neighbors interpolation method to remove outliers.Using the Pearson correlation coefficient and LightGBM feature score method,13 key operational variables were identified and used to establish a model to predict outlet nitrogen oxide(NO_(x))concentration in an SCR system with backpropagation neural network,long short-term memory(LSTM)and LSTM-attention fully connected(FC)model,respectively.The LSTM-attention FC model showed better accuracy and generalization capability compared with other models.Its mean square error,mean absolute error,and coefficient of determination on the training and test datasets were 11.32 and 12.51,3.65%and 3.97%,and 0.96 and 0.94,respectively.Furthermore,a combination of the LSTM-attention FC model with a genetic algorithm used to optimize four feature variables including ammonia pressure compensation,inlet pressure,gas inlet upper temperature,and outlet ammonia concentration.The outlet NO_(x)concentration could be controlled below 80±3 mg/m^(3),and the ammonia slip concentration could be controlled below 0.1 mg/m^(3),demonstrating that the optimization model can provide effective guidance for reducing NO_(x)emissions and ammonia slip of SCR systems.展开更多
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient con...A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
基金This work was supported by the SINOPEC:Development of Remote Diagnosis Technology for FCC Flue Gas Desulfurization and Denitrification(320076).
文摘Samples(25500)were collected from a selective catalytic reduction(SCR)denitrification system in a fluid catalytic cracking unit and preprocessed using the quartile method and the K-nearest neighbors interpolation method to remove outliers.Using the Pearson correlation coefficient and LightGBM feature score method,13 key operational variables were identified and used to establish a model to predict outlet nitrogen oxide(NO_(x))concentration in an SCR system with backpropagation neural network,long short-term memory(LSTM)and LSTM-attention fully connected(FC)model,respectively.The LSTM-attention FC model showed better accuracy and generalization capability compared with other models.Its mean square error,mean absolute error,and coefficient of determination on the training and test datasets were 11.32 and 12.51,3.65%and 3.97%,and 0.96 and 0.94,respectively.Furthermore,a combination of the LSTM-attention FC model with a genetic algorithm used to optimize four feature variables including ammonia pressure compensation,inlet pressure,gas inlet upper temperature,and outlet ammonia concentration.The outlet NO_(x)concentration could be controlled below 80±3 mg/m^(3),and the ammonia slip concentration could be controlled below 0.1 mg/m^(3),demonstrating that the optimization model can provide effective guidance for reducing NO_(x)emissions and ammonia slip of SCR systems.
基金Supported by the National High Technology Research and Development Program of China(2013AA065301)the Fundamental Research Funds for the Central Universities(2016QNA4014)the State Key Laboratory of Clean Energy Utilization at Zhejiang University(ZJUCEU2016006)
文摘A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.