Because the removal of topographic effects is one the most important preprocessing steps when extracting information from satellite images in digital Earth applications,the problem of differential terrain illuminatio...Because the removal of topographic effects is one the most important preprocessing steps when extracting information from satellite images in digital Earth applications,the problem of differential terrain illumination on satellite imagery has been investigated for at least 20 years.As there is no superior topographic correction method applicable to all areas and all images,a comparison of topographic normalization methods in different regions and images is necessary.In this study,common topographic correction methods were applied on an ALOS AVNIR-2 image of a rugged forest area,and the results were evaluated through different criteria.The results show that the simple correction methods[Cosine,Sun-Canopy-sensor(SCS),and Minnaert correction]are inefficient in exceptionally rough forests.Among the improved correction methods(SCSC,modified Minnaert,and pixel-based Minnaert),the best result was achieved using a pixel-based Minnaert approach in which a separate correction factor in various slope angles is used.Thus,this method should be considered for topographic correction,especially in forests with severe topography.展开更多
本文提出一种新的半经验地形校正模型SCEDIL(Simple topographic Correction using Estimation of Diffuse Light),该模型通过结合DEM与光学影像数据寻找局部区域内完全光照和阴影的水平像元,并以光照、阴影水平像元的平均反射率值估算...本文提出一种新的半经验地形校正模型SCEDIL(Simple topographic Correction using Estimation of Diffuse Light),该模型通过结合DEM与光学影像数据寻找局部区域内完全光照和阴影的水平像元,并以光照、阴影水平像元的平均反射率值估算局部区域散射辐射比,提高了陡峭山区影像的地形校正精度。以高分一号卫星和Landsat ETM+影像为例,从目视判读和定量分析两个方面,比较分析该算法与传统半经验地形校正算法(C、SCS+C)的校正结果。结果表明:(1)对较为平坦的地形,SCEDIL和C、SCS+C校正都有较好的目视结果;对地面起伏较大的陡峭地形,C、SCS+C校正后,原阴影区域易呈现破碎化特征,SCEDIL校正后,原阴影区域过渡较为平滑。(2)SCEDIL校正后,各波段反射率的均值和标准差优于C、SCS+C校正,SCEDIL校正后,影像总分类精度与同类地物光谱信息均一性均优于C和SCS+C校正。SCEDIL半经验地形校正方法能有效地去除影像中的地形干扰,尤其对陡峭地形的校正效果,优于常规地形校正模型。展开更多
文摘Because the removal of topographic effects is one the most important preprocessing steps when extracting information from satellite images in digital Earth applications,the problem of differential terrain illumination on satellite imagery has been investigated for at least 20 years.As there is no superior topographic correction method applicable to all areas and all images,a comparison of topographic normalization methods in different regions and images is necessary.In this study,common topographic correction methods were applied on an ALOS AVNIR-2 image of a rugged forest area,and the results were evaluated through different criteria.The results show that the simple correction methods[Cosine,Sun-Canopy-sensor(SCS),and Minnaert correction]are inefficient in exceptionally rough forests.Among the improved correction methods(SCSC,modified Minnaert,and pixel-based Minnaert),the best result was achieved using a pixel-based Minnaert approach in which a separate correction factor in various slope angles is used.Thus,this method should be considered for topographic correction,especially in forests with severe topography.
文摘本文提出一种新的半经验地形校正模型SCEDIL(Simple topographic Correction using Estimation of Diffuse Light),该模型通过结合DEM与光学影像数据寻找局部区域内完全光照和阴影的水平像元,并以光照、阴影水平像元的平均反射率值估算局部区域散射辐射比,提高了陡峭山区影像的地形校正精度。以高分一号卫星和Landsat ETM+影像为例,从目视判读和定量分析两个方面,比较分析该算法与传统半经验地形校正算法(C、SCS+C)的校正结果。结果表明:(1)对较为平坦的地形,SCEDIL和C、SCS+C校正都有较好的目视结果;对地面起伏较大的陡峭地形,C、SCS+C校正后,原阴影区域易呈现破碎化特征,SCEDIL校正后,原阴影区域过渡较为平滑。(2)SCEDIL校正后,各波段反射率的均值和标准差优于C、SCS+C校正,SCEDIL校正后,影像总分类精度与同类地物光谱信息均一性均优于C和SCS+C校正。SCEDIL半经验地形校正方法能有效地去除影像中的地形干扰,尤其对陡峭地形的校正效果,优于常规地形校正模型。