Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim...Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay...In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.展开更多
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ...Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.展开更多
In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellu...In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.展开更多
This research investigates the behavior of a 2×2 pile group under two-directional lateral loads in addition to the vertical load.Through three-dimensional numerical modeling based on Flac 3D software,the study ex...This research investigates the behavior of a 2×2 pile group under two-directional lateral loads in addition to the vertical load.Through three-dimensional numerical modeling based on Flac 3D software,the study examines the total bearing capacity and efficiency coefficient of the pile group,considering factors such as the angle of lateral load,relative pile spacing,and relative stiffness of the pile-soil system.The findings highlight the significance of these factors in understanding and predicting the response of pile groups to changing lateral load directions.The results reveal that increasing the angle of the lateral load from 0°to 45°enhances both the maximum total lateral load and the efficiency coefficient of the pile group.When the relative stiffness of the pile-soil system significantly increases,soil stiffening occurs and reducing the relative spacing of the piles from 7 to 3 times the diameter of the piles diminishes the influence of the pile group.Consequently,the response of the pile group to lateral loads becomes more linear,with only a slight alteration in the maximum total lateral load and the efficiency coefficient when the lateral load is angled from 0°to 45°.Conversely,increasing the relative distance between the piles,specifically from 3 to 7 times the diameter of the piles,amplifies the influence of the pile group.Both the maximum total lateral load and the efficiency coefficient of the pile group exhibit an observed increase.These provide insights for designing pile groups and optimizing their performance under lateral loading conditions.展开更多
Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultan...Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.展开更多
This paper is a revised and expanded version of a paper entitled “The static and dynamic criteria of building an investment asset portfolio” presented at International Conference on Applied Economics (ICOAE, 2014), ...This paper is a revised and expanded version of a paper entitled “The static and dynamic criteria of building an investment asset portfolio” presented at International Conference on Applied Economics (ICOAE, 2014), Chania, 3-5 July 2014 and published at Procedia Economics and Finance, Volume 14, Pages 575-584 (2014) [1]. At the previous research, it showed the significance to go beyond the scope of selecting one or another metric of static efficiency. And the attention was paid to the dynamic efficiency criteria. The ICOAE 2015 research gives brief results of that work, which is only one of applied areas of polydimensional efficiency measurement model (PEMM). Research work on PEMM conceptual and methodical elaboration has been started in the author’s dissertation study [2] and continued in the practical activity and materialized in Innovative LLC (limited liability company) creating project. The research is concentrating on the real economic benefit of 3D PEMM (thee criterial PEMM version) implementation. In the first part of ICOAE 2015 empirical study, the dynamic component of 3D PEMM on the industrial level was tested. Next, the company economic profit changes and dynamic-market 3D PEMM components correlation was estimated. Finally, the economic benefit of 3D PEMM functional operationalization in the framework of management systems development was calculated.展开更多
As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a rel...As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.展开更多
Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low tim...Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.展开更多
In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate ...In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.展开更多
The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimizatio...The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.展开更多
Dion-Jacobson phase two-dimensional(DJ 2D)perovskites,recently attracting considerable interests,exhibit excellent environmental stability and structural tunability,but their solar cells still offer unsatisfactory pow...Dion-Jacobson phase two-dimensional(DJ 2D)perovskites,recently attracting considerable interests,exhibit excellent environmental stability and structural tunability,but their solar cells still offer unsatisfactory power conversion efficiencies(PCEs).Herein,we develop DJ 2D perovskites employing formamidinium(FA+)as a ternary cation in the perovskite cages((PDA)(FA)x(MA)3-xPb4 I13,χ=0,0.15,0.3 and 0.6,PDA=1,3-propanediammonium)for highly efficient and stable perovskite solar cells(PSCs).We found that the DJ 2D perovskite with a 10%FA+fraction presents improved crystallinity,preferred vertical orientation,and longer charge carrier lifetime compared to that without FA+doping.As a result,the FAdoped DJ 2D PSCs exhibit a champion PCE of 14.74%with superior device stability.The unencapsulated devices sustain over 92%of its initial PCE after storage at a constant relative humidity(RH)of 65%for 6000 h,90%by heat at 85℃in air for 800 h,and 94%under 1-sun illumination for 5000 h.These findings demonstrate that the incorporation of FA cation into the DJ 2D perovskite is a promising strategy to develop highly efficient and stable DJ 2D PSCs.展开更多
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
In last decades uncontrolled rapid urbanization in Turkey led to existence of squatter areas and disaster-vulnerable building stocks.After 1999 Marmara earthquake urban renewal has become the base of urbanization poli...In last decades uncontrolled rapid urbanization in Turkey led to existence of squatter areas and disaster-vulnerable building stocks.After 1999 Marmara earthquake urban renewal has become the base of urbanization politics and planning agenda in Turkey.Turkish building industry usually uses RC buildings in the urban renewal projects.In recent years cold formed steel CFS and 3D panel building systems due to its lightweight,fast constructed,energy efficient,and economy start to be used as an alternatives to reinforced concrete buildings especially in seismic areas.In this paper energy performance of three building systems were investigated on a case study school building.Analysis results shows that 3D panel and CFS buildings systems will established with 59%and 36%less energy requirements with respect to traditional reinforced concrete non-insulated buildings.展开更多
基金support provided by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)the Research Grants Council of Hong Kong(Project No:AoE/M-402/20.)+1 种基金the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050248)the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
基金supported by the National Natural Science Foundation of China under Grant U1805262, 61871446, 61671251 and 61701201the Natural Science Foundation of Jiangsu Province under Grant No.BK20170758+2 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province under Grant No.17KJB510011the open research fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2015D10Project of Key Laboratory of Wireless Communications of Jiangsu Province under Grant No.NK214001
文摘In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.
基金financially supported by the National Natural Science Foundation of China(U20B6003,52004303)Beijing Natural Science Foundation(3212020)
文摘Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.
基金supported by National Natural Science Foundation of China (No.61501028)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.
文摘This research investigates the behavior of a 2×2 pile group under two-directional lateral loads in addition to the vertical load.Through three-dimensional numerical modeling based on Flac 3D software,the study examines the total bearing capacity and efficiency coefficient of the pile group,considering factors such as the angle of lateral load,relative pile spacing,and relative stiffness of the pile-soil system.The findings highlight the significance of these factors in understanding and predicting the response of pile groups to changing lateral load directions.The results reveal that increasing the angle of the lateral load from 0°to 45°enhances both the maximum total lateral load and the efficiency coefficient of the pile group.When the relative stiffness of the pile-soil system significantly increases,soil stiffening occurs and reducing the relative spacing of the piles from 7 to 3 times the diameter of the piles diminishes the influence of the pile group.Consequently,the response of the pile group to lateral loads becomes more linear,with only a slight alteration in the maximum total lateral load and the efficiency coefficient when the lateral load is angled from 0°to 45°.Conversely,increasing the relative distance between the piles,specifically from 3 to 7 times the diameter of the piles,amplifies the influence of the pile group.Both the maximum total lateral load and the efficiency coefficient of the pile group exhibit an observed increase.These provide insights for designing pile groups and optimizing their performance under lateral loading conditions.
基金Supported by the National Natural Science Foundation of China (No.61561031)。
文摘Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.
文摘This paper is a revised and expanded version of a paper entitled “The static and dynamic criteria of building an investment asset portfolio” presented at International Conference on Applied Economics (ICOAE, 2014), Chania, 3-5 July 2014 and published at Procedia Economics and Finance, Volume 14, Pages 575-584 (2014) [1]. At the previous research, it showed the significance to go beyond the scope of selecting one or another metric of static efficiency. And the attention was paid to the dynamic efficiency criteria. The ICOAE 2015 research gives brief results of that work, which is only one of applied areas of polydimensional efficiency measurement model (PEMM). Research work on PEMM conceptual and methodical elaboration has been started in the author’s dissertation study [2] and continued in the practical activity and materialized in Innovative LLC (limited liability company) creating project. The research is concentrating on the real economic benefit of 3D PEMM (thee criterial PEMM version) implementation. In the first part of ICOAE 2015 empirical study, the dynamic component of 3D PEMM on the industrial level was tested. Next, the company economic profit changes and dynamic-market 3D PEMM components correlation was estimated. Finally, the economic benefit of 3D PEMM functional operationalization in the framework of management systems development was calculated.
基金supported by the ZTE Corp under Grant CON1412150018the Natural Science Foundation of China under Grant 61572389 and 61471361
文摘As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.
基金supported by National Natural Science Foundation of China(Grant No. 51175287)National Science and Technology Major Project(Grant No. 2011ZX02403)
文摘Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.
基金supported in part by the National Natural Science Foundation of China under Grant no.61473066 and Grant no.61601109in part by the Fundamental Research Funds for the Central Universities under Grant No.N152305001.
文摘In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.
基金Projects(61801237,61701255)supported by the National Natural Science Foundation of ChinaProject(SBH17024)supported by the Postdoctoral Science Foundation of Jiangsu Province,China+2 种基金Project(15KJB510026)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(BK20150866)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NY215046,NY217056)supported by the Introduction of Talent Fund of Nanjing University of Posts and Telecommunications,China
文摘The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.
基金supported by the National Natural Science Foundation of China(No.51973223)the DICP&QIBEBT UN201705+1 种基金the Liaoning Revitalization Talents Program(XLYC1807231)the DICP(Grant No.DICP I202011)。
文摘Dion-Jacobson phase two-dimensional(DJ 2D)perovskites,recently attracting considerable interests,exhibit excellent environmental stability and structural tunability,but their solar cells still offer unsatisfactory power conversion efficiencies(PCEs).Herein,we develop DJ 2D perovskites employing formamidinium(FA+)as a ternary cation in the perovskite cages((PDA)(FA)x(MA)3-xPb4 I13,χ=0,0.15,0.3 and 0.6,PDA=1,3-propanediammonium)for highly efficient and stable perovskite solar cells(PSCs).We found that the DJ 2D perovskite with a 10%FA+fraction presents improved crystallinity,preferred vertical orientation,and longer charge carrier lifetime compared to that without FA+doping.As a result,the FAdoped DJ 2D PSCs exhibit a champion PCE of 14.74%with superior device stability.The unencapsulated devices sustain over 92%of its initial PCE after storage at a constant relative humidity(RH)of 65%for 6000 h,90%by heat at 85℃in air for 800 h,and 94%under 1-sun illumination for 5000 h.These findings demonstrate that the incorporation of FA cation into the DJ 2D perovskite is a promising strategy to develop highly efficient and stable DJ 2D PSCs.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
文摘In last decades uncontrolled rapid urbanization in Turkey led to existence of squatter areas and disaster-vulnerable building stocks.After 1999 Marmara earthquake urban renewal has become the base of urbanization politics and planning agenda in Turkey.Turkish building industry usually uses RC buildings in the urban renewal projects.In recent years cold formed steel CFS and 3D panel building systems due to its lightweight,fast constructed,energy efficient,and economy start to be used as an alternatives to reinforced concrete buildings especially in seismic areas.In this paper energy performance of three building systems were investigated on a case study school building.Analysis results shows that 3D panel and CFS buildings systems will established with 59%and 36%less energy requirements with respect to traditional reinforced concrete non-insulated buildings.