Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet serv...Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.展开更多
Software defined networking( SDN) offers programmable interface to effectively control their networks by decoupling control and data plane. The network operators utilize a centralized controller to deploy advanced net...Software defined networking( SDN) offers programmable interface to effectively control their networks by decoupling control and data plane. The network operators utilize a centralized controller to deploy advanced network management strategies. An architecture for application-aware routing which can support dynamic quality of service( Qo S) in SDN networks is proposed. The applicationaware routing as a multi-constrained optimal path( MCOP) problem is proposed,where applications are treated as Qo S flow and best-effort flows. With the SDN controller applications,it is able to dynamically lead routing decisions based on application characteristics and requirements,leading to a better overall user experience and higher utilization of network resources. The simulation results show that the improvement of application-aware routing framework on discovering appropriate routes,which can provide Qo S guarantees for a specific application in SDN networks.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络...软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络安全问题。提出了一种基于SDN的网络安全框架及安全策略,有效弥补传统网络结构中的网络安全缺陷问题,增强SDN网络安全级别,并建立一种基于终端用户限定与管理的SDN的网络安全框架及其安全策略。展开更多
为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能...为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能融合以及接口结构、网络安全、负载均衡等角度予以阐述。展开更多
文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习...文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习的流量优化与拥塞控制方法,通过建模状态、动作、奖励等要素,实现网络流量智能调整。最后,在Mininet仿真环境中进行了实验验证。通过监测吞吐量、延迟、拥塞情况等性能指标,验证所提方法的有效性。实验结果表明,在网络性能方面,所提方法相较于传统方法取得了显著改善,具备更好的适应性和优化能力。展开更多
重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安...重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安全架构3个维度出发,提出保护智慧校园网络安全的建议。旨在强调SDN架构对于智慧校园建设的运行安全维护作用,以期为今后智慧校园的深化建设提供技术支持。展开更多
The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as techno...The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.展开更多
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi...The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.展开更多
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks...Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.展开更多
文章主要设计一种软件定义网络(Software Defined Network,SDN)管理系统平台,首先分析系统的用户需求,其次提出其整体框架、模块设计以及数据库设计,并进行系统测试。文章所设计的平台能够优化网络维护的流程,提升网络管理员开展日常网...文章主要设计一种软件定义网络(Software Defined Network,SDN)管理系统平台,首先分析系统的用户需求,其次提出其整体框架、模块设计以及数据库设计,并进行系统测试。文章所设计的平台能够优化网络维护的流程,提升网络管理员开展日常网络维护工作的效率。展开更多
针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型....针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型.首先,该模型采用自主设计的ML Sketch结构,使用分类存储结构提高了流量测量的精度.其次,在SDN(software defined network)环境下利用流量实时回放技术,模拟了流量的动态发生场景.最后,在SDN控制平面实现了对大流、突变流和基数估计类流量的实时动态检测.在UNSW-NB15上的实验结果表明,与传统Sketch结构相比,所设计的ML Sketch结构在F1_Score指标上最高提高4.81%,相关误差最高降低81.12%,验证了该模型的有效性.展开更多
基金This work is supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(No.QCXM201910)the National Natural Science Foundation of China(No.61702315,No.61802092)+2 种基金the Scientific Research Setup Fund of Hainan University(No.KYQD(ZR)1837)the Key R&D program(international science and technology cooperation project)of Shanxi Province China(No.201903D421003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802013).
文摘Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.
基金Supported by the National Basic Research Program of China(No.2012CB315803)the Around Five Top Priorities of One-Three-Five Strategic Planning,CNIC(No.CNIC PY 1401)Chinese Academy of Sciences,and the Knowledge Innovation Program of the Chinese Academy of Sciences(No.CNIC_QN_1508)
文摘Software defined networking( SDN) offers programmable interface to effectively control their networks by decoupling control and data plane. The network operators utilize a centralized controller to deploy advanced network management strategies. An architecture for application-aware routing which can support dynamic quality of service( Qo S) in SDN networks is proposed. The applicationaware routing as a multi-constrained optimal path( MCOP) problem is proposed,where applications are treated as Qo S flow and best-effort flows. With the SDN controller applications,it is able to dynamically lead routing decisions based on application characteristics and requirements,leading to a better overall user experience and higher utilization of network resources. The simulation results show that the improvement of application-aware routing framework on discovering appropriate routes,which can provide Qo S guarantees for a specific application in SDN networks.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络安全问题。提出了一种基于SDN的网络安全框架及安全策略,有效弥补传统网络结构中的网络安全缺陷问题,增强SDN网络安全级别,并建立一种基于终端用户限定与管理的SDN的网络安全框架及其安全策略。
文摘为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能融合以及接口结构、网络安全、负载均衡等角度予以阐述。
文摘文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习的流量优化与拥塞控制方法,通过建模状态、动作、奖励等要素,实现网络流量智能调整。最后,在Mininet仿真环境中进行了实验验证。通过监测吞吐量、延迟、拥塞情况等性能指标,验证所提方法的有效性。实验结果表明,在网络性能方面,所提方法相较于传统方法取得了显著改善,具备更好的适应性和优化能力。
文摘重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安全架构3个维度出发,提出保护智慧校园网络安全的建议。旨在强调SDN架构对于智慧校园建设的运行安全维护作用,以期为今后智慧校园的深化建设提供技术支持。
文摘The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.
基金This work was supported by the six talent peaks project in Jiangsu Province(No.XYDXX-012)Natural Science Foundation of China(No.62002045),China Postdoctoral Science Foundation(No.2021M690565)Fundamental Research Funds for the Cornell University(No.N2117002).
文摘The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.
文摘Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.
文摘针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型.首先,该模型采用自主设计的ML Sketch结构,使用分类存储结构提高了流量测量的精度.其次,在SDN(software defined network)环境下利用流量实时回放技术,模拟了流量的动态发生场景.最后,在SDN控制平面实现了对大流、突变流和基数估计类流量的实时动态检测.在UNSW-NB15上的实验结果表明,与传统Sketch结构相比,所设计的ML Sketch结构在F1_Score指标上最高提高4.81%,相关误差最高降低81.12%,验证了该模型的有效性.