In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration groun...In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.展开更多
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min...This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.展开更多
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s...Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.展开更多
The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present...The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.展开更多
The main purpose of this paper is to study the collapse capacity of single degree of freedom(SDOF)systems and to produce fragility curves as well as collapse capacity spectra while considering a broad range of structu...The main purpose of this paper is to study the collapse capacity of single degree of freedom(SDOF)systems and to produce fragility curves as well as collapse capacity spectra while considering a broad range of structural parameters,including system degradation,the P-Δeffect,ductility capacity and the post-capping stiffness ratio.The modified Ibarra-Krawinkler deterioration model was used to consider hysteretic behavior.A comprehensive study was conducted to extract the collapse capacity spectrum of SDOF systems with a wide range of periods,varying from 0.05 to 4 s,to cover short,intermediate and long periods.Incremental dynamic analysis(IDA)was performed for SDOF systems to identify the condition in which the collapse capacity of the system is determined.The IDAs were performed using different sets of seismic ground motions.The ground motion records were categorized into different sets based on three spectral shape parameters,including the epsilon,SaRatio and N_(p).The collapse fragility curves of SDOF systems with different periods were extracted to illustrate the collapse capacity at different probability levels.The results show that structural degradation and ductility as well as the spectral shape parameters significantly affect the collapse capacity of SDOF systems.On the other hand,the post-capping stiffness ratio and small levels of the P-Δeffect do not remarkably change collapse capacity.Also,the collapse capacity of SDOF systems is more sensitive to the records categorized based on SaRatio and N_(p)than those classified based on epsilon.展开更多
In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculatio...In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculation method.The equivalent uniform specific impulse was obtained based on the local conservation of momentum and global conservation of kinetic energy.Additionally,the influence of load uniformity,boundary condition and complex material behaviors(e.g.strain rate effect,hardening/softening and hoop-confined effect)was considered in the resistance calculation process by establishing a novel relationship between external force,bending moment,curvature and deflection successively.The accuracy of the proposed model was verified by carrying out field explosion tests on four RC beams with the scaled distances of 0.5 m/kg~(1/3)and 0.75 m/kg~(1/3).The test data in other literatures were also used for validation.As a result,the equivalent load implies that the blast load near the mid-span of beams would contribute more to the maximum displacement,which was also observed in the tests.Moreover,both the resistance model and test results declare that when the blast load becomes more concentrated,the ultimate resistance would become lower,and the compressive concrete would be more prone to softening and crushing.Finally,based on the modified SDOF model,the calculated maximum displacements agreed well with the test data in this paper and other literatures.This work fully proves the rationality of the modified SDOF method,which will contribute to a more accurate damage assessment of RC structures under close-in explosion.展开更多
Assessing the potential damage caused by earthquakes is crucial for a community’s emergency response.In this study,four machine learning(ML)methods—random forest,extremely randomized trees,AdaBoost(AB),and gradient ...Assessing the potential damage caused by earthquakes is crucial for a community’s emergency response.In this study,four machine learning(ML)methods—random forest,extremely randomized trees,AdaBoost(AB),and gradient boosting(GB)—were employed to develop prediction models for the damage potential of the mainshock(DIMS)and mainshock–aftershock sequences(DIMA).Building structures were modeled using eight single-degree-of-freedom(SDOF)systems with different hysteretic rules.A set of 662 recorded mainshock–aftershock(MS-AS)ground motions was selected from the PEER database.Seven intensity measures(IMs)were chosen to represent the characteristics of the mainshock and aftershock.The results revealed that the selected ML methods can well predict the structural damage potential of the SDOF systems,except for the AB method.The GB model exhibited the best performance,making it the recommended choice for predicting DIMS and DIMA among the four ML models.Additionally,the impact of input variables in the prediction was investigated using the shapley additive explanations(SHAP)method.The high-correlation variables were sensitive to the structural period(T).At T=1.0 s,the mainshock peak ground velocity(PGVM)and aftershock peak ground displacement(PGDA)significantly influenced the prediction of DIMA.When T increased to 5.0 s,the primary high-correlation factor of the mainshock IMs changed from PGVM to the mainshock peak ground displacement(PGDM);however,the highcorrelation variable of the aftershock IMs remained PGDA.The high-correlation factors for DIMS showed trends similar to those of DIMA.Finally,a table summarizing the first and second high-correlation variables for predicting DIMS and DIMA were provided,offering a valuable reference for parameter selection in seismic damage prediction for mainshock–aftershock sequences.展开更多
建立具有设计意义的地震动总输入能量谱是实现结构能量设计的基础。根据中长周期段修正的加速度反应谱及地震动有效持时,提出了一种生成地震动输入能量谱的方法。统计270组人工波的时程分析结果,得到了以等效速度表征的四段式弹性单自由...建立具有设计意义的地震动总输入能量谱是实现结构能量设计的基础。根据中长周期段修正的加速度反应谱及地震动有效持时,提出了一种生成地震动输入能量谱的方法。统计270组人工波的时程分析结果,得到了以等效速度表征的四段式弹性单自由度(single degree of freedom,SDOF)体系总输入能量谱,并给出了不同场地类型、抗震设防烈度等设计条件下归一化等效速度谱的参数取值。在考虑延性系数及刚度折减系数的影响后,提出了弹塑性SDOF体系修正输入能量谱的等效速度谱,估算了引起结构损伤的滞回耗能占总能量的比值。该能量谱可为基于能量的结构设计及研究提供参考。展开更多
为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基...为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基于复合强度指标的弹性SDOF体系三段式等效速度谱.分析了5类场地土条件下SDOF体系系统参数对地震输入等效速度谱的影响.研究结果表明:刚度折减系数对等效速度谱无明显影响;延性系数和阻尼比增大均对等效速度谱峰值和下降段衰减速度有削弱作用.综合考虑各类影响因素,通过参数多次拟合,得出弹性SDOF体系归一化等效速度谱峰值段及下降段修正系数,提出了一种适用于我国场地土类型、可直接供设计使用的弹塑性SDOF体系归一化等效速度谱确定方法,并验证了其有效性.展开更多
文摘In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.
基金Univeristy of Maryland,Start-up Grant to the First Author
文摘This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.
基金National Natural Science Foundation of China Under Grant No.50278090
文摘Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.
基金supports of the National Natural Science Foundation of China(Grant Nos.51478086 and 11672167)Shandong Province Natural Science Foundation of China(Grant No.ZR2015EL048)are much appreciated.
文摘The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.
文摘The main purpose of this paper is to study the collapse capacity of single degree of freedom(SDOF)systems and to produce fragility curves as well as collapse capacity spectra while considering a broad range of structural parameters,including system degradation,the P-Δeffect,ductility capacity and the post-capping stiffness ratio.The modified Ibarra-Krawinkler deterioration model was used to consider hysteretic behavior.A comprehensive study was conducted to extract the collapse capacity spectrum of SDOF systems with a wide range of periods,varying from 0.05 to 4 s,to cover short,intermediate and long periods.Incremental dynamic analysis(IDA)was performed for SDOF systems to identify the condition in which the collapse capacity of the system is determined.The IDAs were performed using different sets of seismic ground motions.The ground motion records were categorized into different sets based on three spectral shape parameters,including the epsilon,SaRatio and N_(p).The collapse fragility curves of SDOF systems with different periods were extracted to illustrate the collapse capacity at different probability levels.The results show that structural degradation and ductility as well as the spectral shape parameters significantly affect the collapse capacity of SDOF systems.On the other hand,the post-capping stiffness ratio and small levels of the P-Δeffect do not remarkably change collapse capacity.Also,the collapse capacity of SDOF systems is more sensitive to the records categorized based on SaRatio and N_(p)than those classified based on epsilon.
基金National Natural Science Foundation of China(Grant No.12102337)to provide fund for conducting experiments。
文摘In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculation method.The equivalent uniform specific impulse was obtained based on the local conservation of momentum and global conservation of kinetic energy.Additionally,the influence of load uniformity,boundary condition and complex material behaviors(e.g.strain rate effect,hardening/softening and hoop-confined effect)was considered in the resistance calculation process by establishing a novel relationship between external force,bending moment,curvature and deflection successively.The accuracy of the proposed model was verified by carrying out field explosion tests on four RC beams with the scaled distances of 0.5 m/kg~(1/3)and 0.75 m/kg~(1/3).The test data in other literatures were also used for validation.As a result,the equivalent load implies that the blast load near the mid-span of beams would contribute more to the maximum displacement,which was also observed in the tests.Moreover,both the resistance model and test results declare that when the blast load becomes more concentrated,the ultimate resistance would become lower,and the compressive concrete would be more prone to softening and crushing.Finally,based on the modified SDOF model,the calculated maximum displacements agreed well with the test data in this paper and other literatures.This work fully proves the rationality of the modified SDOF method,which will contribute to a more accurate damage assessment of RC structures under close-in explosion.
基金China Postdoctoral Science Foundation under Grant No.2022M710333the Beijing Postdoctoral Research Foundation under Grant No.2023-zz-141the National Natural Science Foundation of China under Grant Nos.52278492 and 52078176。
文摘Assessing the potential damage caused by earthquakes is crucial for a community’s emergency response.In this study,four machine learning(ML)methods—random forest,extremely randomized trees,AdaBoost(AB),and gradient boosting(GB)—were employed to develop prediction models for the damage potential of the mainshock(DIMS)and mainshock–aftershock sequences(DIMA).Building structures were modeled using eight single-degree-of-freedom(SDOF)systems with different hysteretic rules.A set of 662 recorded mainshock–aftershock(MS-AS)ground motions was selected from the PEER database.Seven intensity measures(IMs)were chosen to represent the characteristics of the mainshock and aftershock.The results revealed that the selected ML methods can well predict the structural damage potential of the SDOF systems,except for the AB method.The GB model exhibited the best performance,making it the recommended choice for predicting DIMS and DIMA among the four ML models.Additionally,the impact of input variables in the prediction was investigated using the shapley additive explanations(SHAP)method.The high-correlation variables were sensitive to the structural period(T).At T=1.0 s,the mainshock peak ground velocity(PGVM)and aftershock peak ground displacement(PGDA)significantly influenced the prediction of DIMA.When T increased to 5.0 s,the primary high-correlation factor of the mainshock IMs changed from PGVM to the mainshock peak ground displacement(PGDM);however,the highcorrelation variable of the aftershock IMs remained PGDA.The high-correlation factors for DIMS showed trends similar to those of DIMA.Finally,a table summarizing the first and second high-correlation variables for predicting DIMS and DIMA were provided,offering a valuable reference for parameter selection in seismic damage prediction for mainshock–aftershock sequences.
文摘建立具有设计意义的地震动总输入能量谱是实现结构能量设计的基础。根据中长周期段修正的加速度反应谱及地震动有效持时,提出了一种生成地震动输入能量谱的方法。统计270组人工波的时程分析结果,得到了以等效速度表征的四段式弹性单自由度(single degree of freedom,SDOF)体系总输入能量谱,并给出了不同场地类型、抗震设防烈度等设计条件下归一化等效速度谱的参数取值。在考虑延性系数及刚度折减系数的影响后,提出了弹塑性SDOF体系修正输入能量谱的等效速度谱,估算了引起结构损伤的滞回耗能占总能量的比值。该能量谱可为基于能量的结构设计及研究提供参考。
文摘为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基于复合强度指标的弹性SDOF体系三段式等效速度谱.分析了5类场地土条件下SDOF体系系统参数对地震输入等效速度谱的影响.研究结果表明:刚度折减系数对等效速度谱无明显影响;延性系数和阻尼比增大均对等效速度谱峰值和下降段衰减速度有削弱作用.综合考虑各类影响因素,通过参数多次拟合,得出弹性SDOF体系归一化等效速度谱峰值段及下降段修正系数,提出了一种适用于我国场地土类型、可直接供设计使用的弹塑性SDOF体系归一化等效速度谱确定方法,并验证了其有效性.