Self-enhancement (SE) effect of scalar and vector holographic gratings (HG) recorded in three different azobenzene molecular glassy films is experimentally studied in both transmission and reflection modes at 532 and ...Self-enhancement (SE) effect of scalar and vector holographic gratings (HG) recorded in three different azobenzene molecular glassy films is experimentally studied in both transmission and reflection modes at 532 and 633 nm. The maximal SE factor (the ratio of diffraction efficiency to its initial value) SEF = 42 has been achieved. It is shown that the model of complementary HG can be applied also in scalar transmission thin HG case to explain coherent SE. The possibility of vector HG coherent SE in transmission mode is experimentally demonstrated for the first time (SEF = 4.3). The possibility of coherent HG SE in reflection mode is also established for the first time (SEF = 21). HG recording processes as well as coherent SE processes are found to be independent in transmission and reflection modes being determined by volume and surface relief HG, respectively. The permittivity gradient mechanism is proposed to explain the coherent SE of surface relief HG. Both HG recording and coherent SE efficiencies strongly decrease when HG period is decreased from 2 mm to 0.5 mm. No relaxational SE effect is found. Coherent SE effect in molecular glasses is found to be weaker than in inorganic materials.展开更多
The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation...The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation,and rapid growth of combustion surface area.Here,the pressure increase can accelerate the combustion rate of explosives,and the crack propagation can enlarge the combustion surface area.The coupling between these two effects leads to the self-enhanced combustion of explosive charge system,which is the key mechanism for the reaction development after ignition.In this study,combustion cracknetwork(CCN) model is established to describe the evolution of combustion crack reaction of highly confined solid explosives after non-shock ignition and quantify the reaction violence.The feasibility of the model is verified by comparing the computational and experimental results.The results reveal that an increase in charge structure size causes an increase in the time of crack pressurization and extension of cracks due to the high temperature-generated gas flow and surface combustion during the initial stage of explosive reaction,but when the casing is fractured,the larger the charge structure,the more violent the late reaction and the larger the charge reaction degree.The input pressure has no obvious influence on the final reaction violence.Further,a larger venting hole area leads to better pressure relief effect,which causes slower pressure growth inside casing.Larger reserved ullage volume causes longer lowpressure induction stage,which further restrains the internal pressure growth.Furthermore,the stronger the casing constraint,the more rapid the self-enhanced combustion of the high temperaturegenerated gas,which results in more violent charge reaction and larger charge reaction degree during casing break.Overall,the proposed model can clarify the effects of intrinsic combustion rate of explosives,charge structure size,input pressure,relief area,ullage volume,and constraint strength on the reaction evolution,which can provide theoretical basis for violence evaluation and safety design for ammunition under accident stimulus.展开更多
In recent years,with increasingly abundant materials,the materialistic values are becoming more and more common in modern times.Some studies also revealed the relationship between materialism and self-enhancement valu...In recent years,with increasingly abundant materials,the materialistic values are becoming more and more common in modern times.Some studies also revealed the relationship between materialism and self-enhancement values.Based on existing studies,this paper sorted out the relationship between materialism and self-transcendence values.Based on this,it came up with some new research directions and methods to improve the self-transcendence behavior of materialists,including using moral compensation to achieve the transformation from self-enhancement to self-transcendence,and using empathy to achieve the transformation from self-enhancement to self-transcendence.展开更多
Cu_(2-x)S nanostructures have been intensively studied as outstanding chemodynamic therapy(CDT)and good photothermal therapy(PTT)antibacterial agents due to their highly efficient Cu(Ⅰ)-initiated Fenton-like catalyti...Cu_(2-x)S nanostructures have been intensively studied as outstanding chemodynamic therapy(CDT)and good photothermal therapy(PTT)antibacterial agents due to their highly efficient Cu(Ⅰ)-initiated Fenton-like catalytic activity and good photothermal conversion property.However,they still suffer from shortage of Cu(Ⅰ)supply in the long-term and comparatively low inherent photothermal conversion efficiency.Herein,we constructed a self-enhanced synergistic PTT/CDT nanoplatform(Cu_(1.94)S@MPN)by coating Cu_(1.94)S nanoparticles with Fe(Ⅲ)/tannic acid based metal-polyphenol networks(MPN).Activated by the acidic bacterial infection microenvironment,Cu_(1.94)S@MPN could be decomposed to continuously release Cu(Ⅱ),Fe(Ⅲ)ions and tannic acid.As the result of tannic acid-involved Cu and Fe redox cycling,Cu(Ⅰ)/Fe(Ⅱ)-rich CDT could be achieved through the highly accelerated catalytic Fenton/Fenton-like reactions.More importantly,experimental results demonstrated that Cu_(1.94)S@MPN exhibited both excellent photothermal antibacterial and photothermal-enhanced CDT properties to eradicate bacteria in vitro and in vivo.Overall,this novel nanotherapeutics has great potential to become a clinic candidate for anti-infective therapy in future.展开更多
From the perspective of the insiders and outsiders,this study explores the influence of differential leadership on employees’affective commitment and the moderating effect of leader’s self-enhancing humor and indivi...From the perspective of the insiders and outsiders,this study explores the influence of differential leadership on employees’affective commitment and the moderating effect of leader’s self-enhancing humor and individual traditionality.The results show that the differential leadership has a positive impact on the organizational affective commitment of employees,the leader’s self-enhancing humor and the employees’traditionality play a positive regulatory role respectively.Moreover,compared with the outsiders,the low traditionality has a stronger influence on the relationship between differential leadership and organizational affective commitment of the insiders.This paper enriches the research on the influence of leadership style on employee’s affective commitment,proposes and verifies the moderation of leader’s self-enhancing humor and employee’s traditionality,which complements the boundary conditions for the effectiveness of differential leadership style.展开更多
Single-atom nanozymes(SAZs)with peroxidase(POD)-like activity have good nanocatalytic tumor therapy(NCT)capabilities.However,insufficient hydrogen peroxide(H2O2)and hydrogen ions in the cells limit their therapeutic e...Single-atom nanozymes(SAZs)with peroxidase(POD)-like activity have good nanocatalytic tumor therapy(NCT)capabilities.However,insufficient hydrogen peroxide(H2O2)and hydrogen ions in the cells limit their therapeutic effects.Herein,to overcome these limitations,a biomimetic single-atom nanozyme system was developed for self-enhanced NCT.We used a previously described approach to produce platelet membrane vesicles.Using a high-temperature carbonization approach,copper SAZs with excellent POD-like activity were successfully synthesized.Finally,through physical extrusion,a proton pump inhibitor(PPI;pantoprazole sodium)and the SAZs were combined with platelet membrane vesicles to create PPS.Both in vivo and in vitro,PPS displayed good tumor-targeting and accumulation abilities.PPIs were able to simultaneously regulate the hydrogen ion,glutathione(GSH),and H2O2 content in tumor cells,significantly improve the catalytic ability of SAZs,and achieve self-enhanced NCT.Our in vivo studies showed that PPS had a tumor suppression rate of>90%.PPS also limited the synthesis of GSH in cells at the source;thus,glutamine metabolism therapy and NCT were integrated into an innovative method,which provides a novel strategy for multimodal tumor therapy.展开更多
文摘Self-enhancement (SE) effect of scalar and vector holographic gratings (HG) recorded in three different azobenzene molecular glassy films is experimentally studied in both transmission and reflection modes at 532 and 633 nm. The maximal SE factor (the ratio of diffraction efficiency to its initial value) SEF = 42 has been achieved. It is shown that the model of complementary HG can be applied also in scalar transmission thin HG case to explain coherent SE. The possibility of vector HG coherent SE in transmission mode is experimentally demonstrated for the first time (SEF = 4.3). The possibility of coherent HG SE in reflection mode is also established for the first time (SEF = 21). HG recording processes as well as coherent SE processes are found to be independent in transmission and reflection modes being determined by volume and surface relief HG, respectively. The permittivity gradient mechanism is proposed to explain the coherent SE of surface relief HG. Both HG recording and coherent SE efficiencies strongly decrease when HG period is decreased from 2 mm to 0.5 mm. No relaxational SE effect is found. Coherent SE effect in molecular glasses is found to be weaker than in inorganic materials.
基金supported by the National Natural Science Foundation of China (Grant No.12002044)the National Key Laboratory of Shock Wave and Detonation Physics (Grant No.6142A03192007)。
文摘The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation,and rapid growth of combustion surface area.Here,the pressure increase can accelerate the combustion rate of explosives,and the crack propagation can enlarge the combustion surface area.The coupling between these two effects leads to the self-enhanced combustion of explosive charge system,which is the key mechanism for the reaction development after ignition.In this study,combustion cracknetwork(CCN) model is established to describe the evolution of combustion crack reaction of highly confined solid explosives after non-shock ignition and quantify the reaction violence.The feasibility of the model is verified by comparing the computational and experimental results.The results reveal that an increase in charge structure size causes an increase in the time of crack pressurization and extension of cracks due to the high temperature-generated gas flow and surface combustion during the initial stage of explosive reaction,but when the casing is fractured,the larger the charge structure,the more violent the late reaction and the larger the charge reaction degree.The input pressure has no obvious influence on the final reaction violence.Further,a larger venting hole area leads to better pressure relief effect,which causes slower pressure growth inside casing.Larger reserved ullage volume causes longer lowpressure induction stage,which further restrains the internal pressure growth.Furthermore,the stronger the casing constraint,the more rapid the self-enhanced combustion of the high temperaturegenerated gas,which results in more violent charge reaction and larger charge reaction degree during casing break.Overall,the proposed model can clarify the effects of intrinsic combustion rate of explosives,charge structure size,input pressure,relief area,ullage volume,and constraint strength on the reaction evolution,which can provide theoretical basis for violence evaluation and safety design for ammunition under accident stimulus.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of the Ministry of Education"Study on Influence and Countermeasures of Adolescent Materialistic Tendency in the New Era"(202114389004)School-level Scientific Research Project of Chengdu Normal University"Research on Value-level Practice Path of College Students Life Education in the New Era"(CS21SCY18).
文摘In recent years,with increasingly abundant materials,the materialistic values are becoming more and more common in modern times.Some studies also revealed the relationship between materialism and self-enhancement values.Based on existing studies,this paper sorted out the relationship between materialism and self-transcendence values.Based on this,it came up with some new research directions and methods to improve the self-transcendence behavior of materialists,including using moral compensation to achieve the transformation from self-enhancement to self-transcendence,and using empathy to achieve the transformation from self-enhancement to self-transcendence.
基金financially supported by the National Natural Science Foundation of China (Nos. 81803723, 51903062)Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120006)+2 种基金Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019), Innovation and Entrepreneurship Team Leads the Pilot Program of Zhanjiang (No. 2020LHJH005)Discipline Construction Project of Guangdong Medical University (No. 4SG22002G)Science and Technology Projects of Guangzhou (No. 202102020757)。
文摘Cu_(2-x)S nanostructures have been intensively studied as outstanding chemodynamic therapy(CDT)and good photothermal therapy(PTT)antibacterial agents due to their highly efficient Cu(Ⅰ)-initiated Fenton-like catalytic activity and good photothermal conversion property.However,they still suffer from shortage of Cu(Ⅰ)supply in the long-term and comparatively low inherent photothermal conversion efficiency.Herein,we constructed a self-enhanced synergistic PTT/CDT nanoplatform(Cu_(1.94)S@MPN)by coating Cu_(1.94)S nanoparticles with Fe(Ⅲ)/tannic acid based metal-polyphenol networks(MPN).Activated by the acidic bacterial infection microenvironment,Cu_(1.94)S@MPN could be decomposed to continuously release Cu(Ⅱ),Fe(Ⅲ)ions and tannic acid.As the result of tannic acid-involved Cu and Fe redox cycling,Cu(Ⅰ)/Fe(Ⅱ)-rich CDT could be achieved through the highly accelerated catalytic Fenton/Fenton-like reactions.More importantly,experimental results demonstrated that Cu_(1.94)S@MPN exhibited both excellent photothermal antibacterial and photothermal-enhanced CDT properties to eradicate bacteria in vitro and in vivo.Overall,this novel nanotherapeutics has great potential to become a clinic candidate for anti-infective therapy in future.
文摘From the perspective of the insiders and outsiders,this study explores the influence of differential leadership on employees’affective commitment and the moderating effect of leader’s self-enhancing humor and individual traditionality.The results show that the differential leadership has a positive impact on the organizational affective commitment of employees,the leader’s self-enhancing humor and the employees’traditionality play a positive regulatory role respectively.Moreover,compared with the outsiders,the low traditionality has a stronger influence on the relationship between differential leadership and organizational affective commitment of the insiders.This paper enriches the research on the influence of leadership style on employee’s affective commitment,proposes and verifies the moderation of leader’s self-enhancing humor and employee’s traditionality,which complements the boundary conditions for the effectiveness of differential leadership style.
基金the Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer(No.2020B121201004)the Guangdong Provincial Major Talents Project(No.2019JC05Y361)+3 种基金the Outstanding Youths Development Scheme of Nanfang Hospital,Southern Medical University(No.2021J008)the Basic and Clinical Cooperative Research and Promotion Program of Anhui Medical University(No.2021xkjT028)the Open Fund of Key Laboratory of Antiinflammatory and Immune Medicine(No.KFJJ-2021-11)Grants for Scientific Research of BSKY from Anhui Medical University(No.1406012201).
文摘Single-atom nanozymes(SAZs)with peroxidase(POD)-like activity have good nanocatalytic tumor therapy(NCT)capabilities.However,insufficient hydrogen peroxide(H2O2)and hydrogen ions in the cells limit their therapeutic effects.Herein,to overcome these limitations,a biomimetic single-atom nanozyme system was developed for self-enhanced NCT.We used a previously described approach to produce platelet membrane vesicles.Using a high-temperature carbonization approach,copper SAZs with excellent POD-like activity were successfully synthesized.Finally,through physical extrusion,a proton pump inhibitor(PPI;pantoprazole sodium)and the SAZs were combined with platelet membrane vesicles to create PPS.Both in vivo and in vitro,PPS displayed good tumor-targeting and accumulation abilities.PPIs were able to simultaneously regulate the hydrogen ion,glutathione(GSH),and H2O2 content in tumor cells,significantly improve the catalytic ability of SAZs,and achieve self-enhanced NCT.Our in vivo studies showed that PPS had a tumor suppression rate of>90%.PPS also limited the synthesis of GSH in cells at the source;thus,glutamine metabolism therapy and NCT were integrated into an innovative method,which provides a novel strategy for multimodal tumor therapy.