To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine ...To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine VUMAT. For each individual grain in the polycrystalline aggregate, the rate dependent model was adopted to calculate the plastic shear strain increment in combination with the Voce hardening law to describe the hardening response, the lattice reorientation caused by slip and twinning were calculated separately due to their different mechanisms. The elasto-plastic self consistent (EPSC) model was employed to relate the response of individual grain to the response of the polycrystalline aggregate. Rolling processes of AZ31 sheet and as-cast AZ31 alloy were simulated respectively. The predicted texture distributions are in aualitative a^reement with experimental results.展开更多
By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward...By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control(NL-PP-STC) algorithm was presented in detail. The identi fication ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identi fiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear p H neutralization process was carried out and good control performance was achieved.展开更多
基金Projects(50821003,50405014)supported by the National Natural Science Foundation of ChinaProjects(10QH1401400,10520705000,10JC1407300)supported by Shanghai Committee of Science and Technology,China+1 种基金Project(NCET-07-0545)supported by Program for New Century Excellent Talents in University,ChinaFord University Research Program,China
文摘To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine VUMAT. For each individual grain in the polycrystalline aggregate, the rate dependent model was adopted to calculate the plastic shear strain increment in combination with the Voce hardening law to describe the hardening response, the lattice reorientation caused by slip and twinning were calculated separately due to their different mechanisms. The elasto-plastic self consistent (EPSC) model was employed to relate the response of individual grain to the response of the polycrystalline aggregate. Rolling processes of AZ31 sheet and as-cast AZ31 alloy were simulated respectively. The predicted texture distributions are in aualitative a^reement with experimental results.
文摘By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control(NL-PP-STC) algorithm was presented in detail. The identi fication ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identi fiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear p H neutralization process was carried out and good control performance was achieved.